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Abstract 

The logical framework LF is a type theory defined by Harper, Honsell and Plotkin. It is well- 
suited to serve as a meta language to represent deductive systems. LF and its logic programming 
implementation Elf are also well-suited to represent meta-theoretic proofs and their computa- 
tional content, but search for such proofs lies outside the framework. This thesis proposes a 
computational meta logic (MLF) for the Horn fragment of LF. The Horn fragment is a signifi- 
cant restriction of LF but it is powerful enough to represent non-trivial problems. This thesis 
demonstrates how MLF can be used for the problem of compiler verification. It also discusses 
some theoretical properties of MLF. 
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Chapter 1 

Introduction 

The logical framework LF is a type theory defined by Harper, Honsell and Plotkin [HHP93]. It is 
very well-suited to serve as a meta language to represent and reason over deductive systems. LF 
has been implemented as the logic programming language Elf by Pfenning [Pfe89, Pfe92, Pfe94a]. 
In recent years LF and Elf became more and more popular. Significant problems have been 
represented in LF and Elf, for example the Church-Rosser theorem [Pfe99] and a structural cut 
elimination theorem for classical, intuitionistic and linear logic [Pfe94c, Pfe94b]; 

Elf is a logic programming language and not an automated theorem proving system. Con- 
sequently, it serves the purpose of representing meta theoretical results, but it does not sup- 
port their derivation. The calculus of constructions [CH88, PM93] and Martin-Löf type theory 
[ML84, ML84] are type theories different from LF. Based on these type theories, many different 
proof development systems have been implemented: Coq [C+95], LEGO [LP92, Pol94], Nuprl 
[C+86], Alf [Mag93, MN94, Mag95], and others. These systems are not designed as programming 
languages. 

The aim of this thesis is to define the computational meta logic MLF for a fragment of 
LF. MLF is based on the intuitionistic sequent calculus with induction. Intuitionistic logic 
is nicely presented in [Gal93]. MLF is decorated with proof terms which can be interpreted 
as programs. In this sense MLF is computational. Differently from other implementations of 
automated theorem proving systems with induction like Coq [C+95], PVS [ORS92, RSC95], and 
others, MLF does not generate induction principles. Induction hypothesis can be applied to any 
term, the well-foundedness of the induction must be proven as a property of the proof term. A 
case distinction rule allows the elimination of LF types. 

When using LF as a meta language a common technique for representing an object language 
is higher order abstract syntax. It allows LF variables to mimic a variable concept of the object 
language [Pfe92]. Consequently, constructs in the object language depending on free variables 
are represented as functions in LF. 

MLF is a meta logic for the Horn fragment of LF. This restriction disallows MLF to prove 
the existence of a function object in a functional LF type. Consequently, higher order abstract 
syntax cannot be used in the object language, MLF is used to reason about: The existence 
of a construct with free variables is not provable. On the other hand, if higher order abstract 
syntax is not used, MLF is still powerful enough to prove interesting results — as it is shown 
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by examples in this thesis. The meta logic is full intuitionistic logic, the restriction of the Horn 
fragment refers only to the underlying type theory. 

This thesis is organized as follows: In chapter 2 we introduce a toy problem. We show how 
this toy problem can be represented in LF and the calculus of inductive constructions. We also 
show an implementation of it in Elf, and how to use Coq's proof engine to derive some meta 
theoretical results. In chapter 3, we define MLF in terms of its language and its inference rules. 
Some theoretical properties of MLF are discussed in chapter 4. In Chapter 5 we revisit the 
example from chapter 2 and describe the derivation of all presented meta theoretical results in 
MLF. 



Chapter 2 

Motivation 

Type theory can be used to represent difficult and complex theoretical structures in a uniform 
way. LF type theory is very well suited to represent deductive systems, other type theories are 
more expressive. In this chapter we will present the logical framework LF and the the calculus of 
inductive constructions (CIC). Both type theories are used as the underlying theories for several 
implementations. Elf is a logic programming language based on LF [Pfe89, Pfe94a, Pfe92] and 
Coq is a proof assistant based on CIC [C+95]. 

Type theories are defined as a set of type inference rules. A signature defines basic constants 
and their types. Signatures represent a set of constructors, from which more complicated terms 
can be built. A signature in LF is interpreted as a logic program for Elf. Evaluation of a 
program corresponds to type-checking. A signature in CIC is interpreted as a collection of 
objects, lemmas and proofs for Coq. 

In the theory of programming languages one area of research is to define adequate no- 
tions of semantics for programming languages. The goal is to obtain a better understanding 
of programming languages and their problems. Languages can be compared by their seman- 
tics. Programming languages do not have a unique semantics: Denotational semantics identifies 
computation with a denotation. Operational semantics explains computation in terms of an 
underlying machine. Natural semantics arises from rewriting theory: For a given reduction 
ordering the meaning of a program is its canonical form. 

The remainder of this chapter is organized as follows: In the first section of this chapter we 
introduce a toy programming language and define its natural and operational semantics following 
ideas of Hannan and Pfenning [HP92]. Then we show that if a program has a certain semantical 
value with respect to the natural semantics, it has the same semantical value with respect to 
the operational semantics. The reverse direction can also be shown — the reader may consult 
[HP92, Pfe92]. We will call this theorem equivalence theorem. The toy language, both semantic 
notions and the proof of the equivalence theorem can be represented in LF and implemented 
in Elf, as we show in in section 2.2. Similarly it is possible to represent and implement the 
toy language and both semantical notions in CIC. Unlike the representation of the proof of the 
equivalence theorem in LF, Coq supports the search for the proof. This is described in section 
2.3. Finally, in the last section of this chapter, we summarize our experiences with Elf and Coq. 
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2.1    An Example 

We define now the toy programming language T. The language is essentially the simply typed 
A-calculus containing two constructs: A-abstraction and application. Variables are represented 
by de Bruijn indices. In the first subsection we introduce language T. In the second subsection 
we define an evaluation judgement, which defines the natural semantics of T. In the third 
subsection we introduce a simulating machine with which we define the operational semantics. 
In the last subsection we state the equivalence theorem and prove one direction. 

2.1.1    A Toy Language 

The language T is based on the simply-typed A-calculus A~\   Variables are represented by 
de Bruijn indices:  in de Bruijn's original formulation [dB72], variable names are encoded by 
natural numbers. De Bruijn indices replace variable names. Instead of defining variable names 
with every A-abstraction, we implicitly assign natural numbers to each A-expression. The index 1 
then refers to the innermost A-expression, the index 2 to the A-expression in which the innermost 
is embedded: 

level 1 

AA~(2iy 

level 2 
This de Bruijn expression is equivalent to Xx. Ay. {x y). T will be represented in Elf and Coq. 
The indices cannot be represented directly: a potentially infinite number of constants would be 
necessary. Since Elf does not possess an implicit concept of natural numbers, de Bruijn indices 
have to be defined as: 1 is a de Bruijn index and N f is a de Bruijn index if N is a de Bruijn 
index. The syntax of the language T has the following form: 

Modified de Bruijn Expressions:     E   : :=    l\E-\\ KE\{E1E2) 

Application is defined in the standard formulation of the A-calculus. Note, that by introducing 
indices this way, de Bruijn expressions can be formed which do not directly correspond to A- 
expressions: 

AA(ll)t 

is equivalent with 

A A (It It) 

We assume all de Bruijn expressions to be closed, i.e. indices do not refer outside the outermost 
A-abstraction. 

In the regular A-calculus, /^-reduction is defined as {(Xx.M) N) reduces to [N/x](M). We 
avoid defining the notion of substitution. Instead we introduce the notion of environment, 
which represents variable bindings. An environment is represented as a stack of values. It is 
not enough to take de Bruijn expressions as values: we cannot assume that only unevaluated de 
Bruijn expressions are bound to variables. Evaluated de Bruijn expressions have to include the 
environment in which they are evaluated. Otherwise, partially evaluated de Bruijn expressions 
would loose binding information. Therefore, the definition of environment and the definition of 
values depend mutually on each other: 
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Environments    K   : :=   • \ K;W 
Values   W   : :=    {K, E} 

Values are also called closures. The /^-reduction rule for de Bruijn expressions now has the 
form: (A M N) reduces to {•;{•, N}, M}. We call (A M N) a /?-redex for arbitrary M and N. 
Given an arbitrary de Bruijn E expression, the ß rule can be applied to every subexpression of 
E which is a /3-redex. A de Bruijn expression which does not contain any /3-redices is called 
normal. 

The /^-reduction rule does not define in which order /3-redices are resolved. We will use a 
common evaluation order to derive the natural semantics. This evaluation order is referred to as 
eager evaluation. /3-reduction is applied in an outermost leftmost order. The evaluation stops if 
a de Bruijn expression is evaluated which is not a /?-redex. This expression is called canonical. 

Expressions, environments, and values are the basic components of the language T. In the 
next subsections we define its natural and operational semantics. 

2.1.2    Natural Semantics 

We represent the natural semantics of the language T by an evaluation judgment. The judgment 
is defined to derive the canonical form of a de Bruijn expression using the eager evaluation order. 

Let E be an expression, W a value, and K an environment. The judgment 

K\-E^W 

puts K, E and W in relation: In a context K, the expression E has the semantical value W with 
respect to the natural semantics. The set of inference rules according to the eager evaluation 
ordering is defined as follows: If the de Bruijn expression is of the form 1, it refers to the top 
element of the environment, in this case W. We can assume W to be already a canonical element. 
Therefore it does not have to be evaluated further, but represents the result expression. 

■ev_l 
K;Whl^W 

If the de Bruijn expression is of the form .Ef, the top element of the environment is not used 
any more. It is enough to evaluate E in the new smaller environment K. The result of the 
evaluation is the canonical form of the expression E. 

KhE^W 
ev_snift 

K;W't-Et^W 

In the case that the de Bruijn expression is a A-abstraction, the eager evaluation ordering 
demands not to apply ß reduction to any ß redex in the body of the A-expression. Therefore 
the result is the closure of K and A E. 

evJam 
K\-AE^{K,AE} 
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St  v--st^ Sf, St> 

E W 

Figure 2.1: Operational semantics of T 

The last rule is the application rule. This rule exhibits the eager evaluation order. To evaluate 
(Ei E2), first E\ must be evaluated, and the result is applied to the evaluated value of E2. 
Note, that the context K is made available to the first and second premiss. The result of the 
evaluation is independent of the evaluation order of the first two premisses. 

K\-Ei^{K\AE[}           K\-E2^W2           K';W2\-E[^W 
 ev_app 

K h {Ei E2) «-> W 

2.1.3    Operational Semantics 

The definition of the operational semantics differs quite a lot from the definition of the natural 
semantics. The operational semantics of T is defined in terms of the execution behavior of a 
simulating machine. The machine we are using for our considerations is a CLS machine [Pfe92], 
which is a state machine with a special instruction set. Each instruction changes the current 
state of the machine deterministically. A sequence of states visited during a computation is 
called a trace. The evaluation of a de Bruijn expression is described in 2.1. In a first step the 
de Bruijn expression is mapped into an initial state 5i, via an embedding function 1. Using 
the CLS machine, St is transformed into a final state St'. The judgment which expresses this 
is defined as St =>■ St'. The resulting semantical value is projected into the value W, via a 
projection function n. 

The notion of state must refer to the environment, to the program which is to be executed, 
and to the result calculated so far. The order of the "execution" of the first two subgoals does 
not play any role in the definition of the natural semantics. This is not the case for the CLS 
machine. Assume the machine is in state 5, the execution of a instruction results in state 5". 
The execution of the next instruction results in a state S". It is not true that the machine would 
end up in the same state S", if both instructions would have been executed in reverse order. 

Therefore it is not enough to represent only the actual environment in the state. Environ- 
ments at earlier stages of the computation must be accessible, so consequently the history of 
environments has to be stored in form of a stack. This stack serves as a storage space. Every 
new subcomputation is provided with a new copy of the actual environment on top of the stack. 

Environment Stacks   KS   : :=   • | KS; K 

A similar argument makes the definition of another notion necessary: The result values of 
subcomputations should not manipulate the partial result of the actual computation. Therefore 
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result values must also be administered by a stack: The result of a subcomputation is always 
the top element of the value stack: 

Value Stacks   S   : :=   • | S; W 

We will now define the instruction set of the CLS machine: First, expressions can serve as 
instructions. According to the form of an expression, the single step transitions must be defined. 
Second, there are special instructions, which are executed to combine the results of the execution 
of subgoals. In the case of the execution of an application (E\ E2), E\ is executed to obtain a 
value Wi, then E^ to obtain W2, and, finally, W\ and W? are combined. The instruction which 
performs this combination is apply. 

Instructions   I   : :=   E\ apply 

A program is defined as a sequence of instructions: done stands for the "end of execution" flag. 

Programs   P   : :=    done \ IkP 

The notion of state is a triple consisting of an environment stack, a program and a value stack: 

State   St   : :=   (KS, P, S) 

Next, the state transition function must be defined. A computation is a trace of one or more 
single step transitions. Each single step transition describes the state change evoked by one 
instruction. The single step relation is defined by a new judgement St => St'. The rules for 
this single step transition are formed as axioms: 

If the instruction to be executed is of form 1, the top element of the actual environment 
has to be returned as a value. Note, that the actual environment is the top environment on the 
environment stack. 

s_l 
({KS; (K; W)), IkP, S) => (KS, P, (S; W)) 

If the instruction to be executed is of form E"\, the top element of the actual environment can 
be discarded and the E has to be executed. 

s_shift 
((KS; (K; W)), Pf &P, S) => ({KS; K), EkP, S) 

In case that a A-expression has to be executed, the result object is the closure of the actual 
environment and the A-expression A E. No further subcomputation is necessary. 

sJam 
((KS; K), A EkP, S) =» (KS, P, (5; {K, A E})) 

Application is more complicated, because two subcomputation have to be initiated.  The first 
subcomputation calculates the value of E\, the second the value of E^. 

((KS; K), (Pi P2)&P, S) => ((KS; K; K), E1kE2kapplykP', S) 
■ s_app 
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The instruction apply combines the results of both subcomputations. It assumes that both 
result objects are the top two elements of the result stack. The top element is assumed to be the 
value of the parameter, the second element is assumed to be the function. Therefore it must be 
a A-abstraction. To combine both computations K' is made the actual environment by pushing 
it on top of the environment stack, and then the value of the parameter W is pushed onto the 
actual environment. Afterwards, the body of the A-expression is executed: F. 

 s_apply 
{KS, applykP, (S; {!<', A (F)}; W)) =► ((KS; (K'; W)), FkP, S) 

A computation trace lies within the transitive closure of single step transitions: The judge- 
ment St =>■ St' expresses the existence of a trace from St to St'. A trace can be empty or 
formed by a single step followed by another trace: 

St=>St    St'=^St"      t m_id  mjstep 
St =2* St St=±* St" 

Finally a new judgement is introduced which defines the semantical value of a program with 
respect to the operational semantics: In an environment K, the expression E has the semantic 
value W: 

K\-E =3» W 

The inference rule for this judgement is easily motivated: E has to be mapped into a state: This 
is defined by the function i in diagram 2.1. A state is defined in which the environment stack 
contains only one element, the environment K. E is directly interpreted as a program. After 
executing E, the computation must stop: done is the instruction executed after E has been 
executed. The value stack of the initial state is empty: 

i(E) = ((-;K),Ekdone,-) 

After the execution is completed, the final state is expected to be of the form (•, done, (•; W)). 
The K function we introduced in diagram 2.1 is therefore defined as 

n((;done, (-,W))) = W 

The goal of the computation is to reach a final state. The environment stack should be 
empty, since the execution came to an end. The program should contain only the clause done. 
The result value is expected to be the only element on the value stack. 

((•; K), Ekdone, •) =^> (•, done, (•; W)) 
c_run 

K\-E=^& W 

We introduced the language T and its natural and operational semantics: In the next sub- 
section we state the equivalence theorem, a de Bruijn expression has the same meaning in both 
semantics. We give the proof of the necessary direction: If a given expression E has the seman- 
tical value W with respect to the natural semantics, then E will have the same semantical value 
W with respect to the operational semantics. 
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2.1.4    Equivalence Theorem 

In this subsection we show that the operational semantics for T and the natural semantics for T 
are equivalent: Given a context K, an environment E and a value W, the equivalence theorem 
says that 

K\- E^W if and only if K \- E =^ W 

This theorem is of interest for two reasons. First, the theorem sets both semantical notions in 
relation. Second, its proof is representable in LF type theory, and therefore also in the Calculus 
of Inductive Constructions. Section 2.2.1 and section 2.3.1 show details of this representation. 

For the proof of the equivalence theorem, we need a preliminary lemma. This lemma is 
a generalization of one direction of the the equivalence theorem. It is called subcomputation 
lemma, because it states that every subcomputation ends with a result value on top of the value 
stack: 

Lemma 2.1 (Subcomputation) Let K be an environment, E be an expression and W be a 
value. IfK\- E t-^W then for all Ks environment stack, P program and S value stack 

((Ks; K), EkP, S) =^ (Ks, P, (S; W)) 

Proof: By induction on V :: K h E <-+ W. 

Case: V ends in an application of the rule ev_l. 

T> = ev_l 
{K; W)\-1^W 

Hence we have by using s_l 

({KS; (K; W)), lkP, S) => {KS, P, (5; W)) 

Using  rules  for the  multi  step  computations,   we  immediately  get  a derivation  for 
({KS; {K; W)), 1&, S) =^ (KS, P, {S; W)). 

Case: V ends in an application of the rule ev_shift 

K\-E^ 

K;W'hE^^W 

Then 

L> = ev_shift 

((Ks;(K;W')),EtkP,S) 
=►  ((Ks;K),EkP,S) By s_shift 
=>   (Ks, P, S; W) By induction hypothesis 

Therefore there is a derivation for ({Ks; (K; W1)), #t &P, S) =^> (Ks, P, S; W). 
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Case: V ends in an application of the rule evJam: 

TJ = evJam 
K h A E ^ {K, A E} 

Then ((KS; K), A EkP, S) =^- (KS, P, (S; {K, A E})) follows directly from the definition 
of s.lam. 

Case: V ends in an application of the ev_app rule. 

X>i V2 V3 

Kh^i4 {K',AE[}       K\-E2^W2       K'\W2\-E[^W 
V = ev_app 

K \- (E1 E2) c-> W 

Then 

((KS;K),(E1E2)kP,S) 
=>•  ((Ä"5; Ä"; Ä"), E&Ev&applybP, S) By rule ev_app 
=^   ((KS; K), E2kapplykP, (S; {K1, A E[})) By ind. hyp. on Vx 

=^-   (ÜT5, applykP, (5; {Ä7, A £?{}; W2)> By ind. hyp. on X>2 

=>  ((KS; (K'\ W2)), E[kP, S) By rule s_apply 
^  (KS,P,(S;W)) By ind. hyp. on V3. 

D 

Now we can state the equivalence theorem and prove one direction of it. The other direction 
is omitted, the reader is referred to [Pfe92]. 

Theorem 2.2 (Equivalence Theorem) For K environment, E expression and W value: 

K\-E^W   if and only if K h E =4=» W 

Proof: =>: Apply subcomputation theorem to K,E,W and K h E M- W. Choose the environ- 
ment stack to be •, the program to be done and the result stack to be •: 

((•; K), Ekdone, ■) ^ (-, done, (■; W)) 

Apply c_run to obtain: 

KhE^frW 

«=: See [Pfe92]. □ 
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2.2    LF and Elf 

Elf is a logic programming language based on LF type theory. Basic theoretical work has been 
done by Plotkin, Honsell, and Harper [HHP93]. Pfenning implemented LF type theory in form 
of the logic programming language Elf [Pfe91]. The goal of this section is to introduce LF type 
theory and to motivate the advantages of using LF type theory as a programming language. We 
will also demonstrate the need for a meta logic for LF. 

This section is divided into two subsections. In the first subsection LF type theory is intro- 
duced. In the second subsection the representation of the language T in LF is given and the 
implementation of T in Elf is explained. This presentation will follow closely [Pfe92]. We then 
will discuss why meta logical reasoning over LF signatures within LF is burdensome: Elf is a 
programming language and is not anticipated to be a theorem prover. 

While this section is concerned with LF and Elf, the next section gives an overview of the 
calculus of inductive constructions [PM93] as the theoretical foundation of Coq 5.10.[C+95]. 

2.2.1    LF Type Theory 

LF type theory was introduced by Harper, Honsell and Plotkin in [HHP93]. It can be seen 
as an extension of the simply typed A-calculus by introducing dependent types and a rigorous 
distinction between object level and type level. Note, that this distinction is blurred for CIC as 
we will see in the next section: there is no syntactical distinction between types and objects. 

The strict distinction between object level and type level has a pleasant side effect. There 
is a natural way to present deductive systems in LF type theory. Objects can be interpreted 
as derivations and judgments can be interpreted as types. This is often referred to as the 
judgment-as-type paradigm. It makes a logic interpretation of LF type theory possible: Types 
can also be interpreted as propositions, their truth value depends on whether the type is empty 
or not. If the type is not empty, it is called inhabited and the corresponding object corresponds 
to the proof. The combination of LF type theory, deductive systems, the logic interpretation 
and special characteristics of the inference rule system enables LF type theory to be used as a 
foundation for the logic programming language Elf. 

A closer look at LF type theory reveals that there is another level besides the object and 
the type level. This level is called the kind level. A kind is the "type" of a type. Object level, 
type level and kind level describe all entities which are expressible in-LF type theory. The strict 
distinction between object level and type level prevent the construction of self referential types: 
there is no need to introduce type universes for LF type theory. 

We introduce now the language of each of these three layers. The object layer is represented 
using the simply-typed A-calculus. We use M to denote objects. Objects are always typed. A 
stands for types. The presence of dependent types makes the notion of kind necessary. Kinds 
are abbreviated by K. There are two different groups of constants: we differentiate constants 
introduced on the object level from those introduced on the type level. All constants must be 
properly typed, that is object constants must have a certain type and type constants must be 
of a certain kind. 
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Kind: K    : :=   type | A -> K \ Tlx : A.K 
Type: A    : :-   a M1...Mn \ Ai ->■ A2 \ Ux : AX.A2 

Object:        M   : :=   c\x\Xx: AM \ M\ M2 

Signature:    £    : :=   . | S, c : A | £, a : K 

Objects can be either variables, constants, applications, or A-abstractions. Since there is 
the notion of function on the object level, there must be a function type on the type level: the 
ri-type. There are no type variables in LF, only object variables. Types which are dependent 
on parameters are called type families. In our presentation of LF we define the arrow types as 
syntactic sugar: The type A± —¥ A2 is a function type from A\ to A2. This is only a special case 
of the ri-type: Ila; : A\. A2 where x does not occur free in A2. 

Dependent kinds are used to "type" dependent types: Without dependent types there would 
be only one kind : type. To assign a kind to a function type, dependent kinds have to be 
introduced: Ila; : A. K. It should be clear from the context if a II-application constructs a type 
or a kind. As in the case for types, arrow kinds are defined as syntactic sugar. A —>• K stands 
for Ila; : A. K, where x does not occur free in K. 

Let c, a be a constant names: c : A is called an object constant declaration and a : K is called 
a type constant declaration. The signature £ is defined as a list of such declarations. "•" stands 
for the empty signature. 

We will now introduce the type system of LF. To define the general typing judgments we 
have to introduce the notion of a context. A context represents a list of variables and their types. 
Variables are always object variables, so their types must be defined on the type level. "•" stands 
for the empty context. In the following we omit the leading "•," for non-empty contexts. Here 
is the syntactical definition of contexts in LF: 

Context:   T   : :=   .\T,x:A 

Because of the presence of dependent types, well-formed contexts have to be distinguished 
from ill-formed contexts. The problem of ill-formed contexts stems form the following obser- 
vation: The types of the variables defined in the context need not to be closed. Let a; be a 
free variable occuring in the type of a variable declaration. The context is ill-formed if x is not 
declared earlier in the context. If x is declared earlier, then the context is called well-formed. 

Example 2.3 Tw = x : A, z : (B x) is a well-formed context, I\- = z : (J5 x) is an ill-formed 
context. 

We define the judgment h V ctx to express that the context T is well-formed. For the set of 
inference rules defining this judgment consult [Pfe92]. 

A similar observation holds for signatures: Object and type constants have to be defined 
before they can be used. This leads to the distinction between well-formed and ill-formed signa- 
tures. The reader may consult [Pfe92]. We omit the treatment of signatures in this presentation. 

We define the typing judgments for LF objects, LF types, and LF kinds. Note, that all three 
judgments depend on contexts: kinds and types may also depend on variables. 
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Definition 2.4 (LF typing judgments)  We write 

\- T ctx for T being a well-formed context 
r \- M : A for M being of type A, in context T 
T \- A : K for A being of kind K, in context V 
T \- K kind for K being a kind in context V 

We are not going to give all typing rules — a complete list is given in [HHP93, Pfe92]. As an 
example consider the typing rule for application of LF objects: For (M N) being well-typed we 
have to show that Mis a function of type Ux : A. B, which domain is equivalent to the type 
of the parameter object N — A. Since B may depend on x, the type of (M N) is B, where all 
free occurrences of x are replaced by N: 

V\-M :Ux:A.B    T h N : A   .. 
 obiapp 

T\-(MN):[N/x](B) 

The next rule shows how application on type level is handled: It is of the same form as objapp 
but n is now a constructor for kinds: 

T\-A:Ux:B.K    T h M : B „  typeapp 
Th(AM) :[M/x](K) 

As a last example we give the rule for II-formation on the kind level. Note, that there is no 
application on the kind level. The rule reads as follows: If A is a type in a context T and K can 
be shown to be a kind in the extended context T,x : A, then the free occurrence in K can be 
bound by the II-constructor and the resulting construct is a kind. 

r h A : type    I1; x : A h K kind 
 kindpi 

ThUx:A.K: kind 

We do not present the other rules here. We also omit the presentation of equality rules. The 
reader is referred to [HHP93]. 

This completes the short introduction into the underlying ideas of LF and its realization. 
When using LF as a programming language the signature corresponds to a logic program. Con- 
stants are the constructors for proof objects. Types stand for propositions. A query corresponds 
to ask if a type is inhabited. The execution of a query corresponds therefore to type check a 
type and to construct a proof term for it. If no proof term can be found, the query is said to 
fail, otherwise it succeeds. Program execution of program A corresponds therefore to the search 
of a derivation ■ h M : A. 

Higher order abstract syntax 

Higher order abstract syntax is a special variable representation technique which follows quite 
naturally from taking the A-calculus as a representation language for languages which require 
a variable concept. This technique stems from the following observation: When representing a 
variable concept there are two possibilities to be considered: First, the variable concept can be 
represented directly. Variable names are represented by new constants. Substitution must also 
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be represented. Experience shows, that this approach is rather tedious and it is very difficult to 
represent a variable concept correctly. A second possibility is to use the meta variable concept 
of the type theory instead of implementing a variable concept from scratch. In this case, terms 
with free variables are represented as function objects in the type theory. The technique is called 
higher order abstract syntax or HOAS. Object variables are represented as meta variables. The 
following example makes this more clear: 

Example 2.5 Assume a language with a variable concept to be represented: We denote a vari- 
able of this concept with x and the LF variable with x. Suppose that the function s is already 
represented in LF. Let f be a function which should be represented in LF. 

f(x) = (sx) 

When using HOAS, f is represented as an LF X-term: 

f = Xx. (s x) 

The variable concept does not have to be represented in LF. 

Variable concepts typically make the notion of substitution necessary. How are substitutions 
represented when using HOAS — and how are substitution applied when using HOAS? The 
notion of substitution need not to be represented directly in the LF type theory. Substitution 
application corresponds to /3-reduction. And /^-reduction corresponds to application on the 
LF-object level. 

It is clear that mimicking substitution application by LF object application lacks general- 
ity. It must be proven, that object level application is general enough, to mimic substitution 
application. This is expressed by the substitution lemma, which has to be proven for every 
type family, which makes use of HOAS: Let D be a term, which should be represented as an 
object in LF type theory. We write [•] for the polymorphic representation function. Let M 
be dependent on some variable x. Let a be the substitution of the form [N/x]. The notation 
[N/x](M) is a term, where all occurrences of x in M are replaced by N. The idea of HOAS is it, 
to replace object variables by meta variables. Therefore \M] is actually a A-expression in LF, 
which expects another LF object as argument. The representation of substitution application 
has to be as follows: 

\[N/x)M] = ([Ml \N]) 

This property has to hold, otherwise HOAS is not applicable for the language in question. It 
is shown, that it holds in many examples. It is referred to as the substitution lemma in [Pfe92]. 

Canonical forms 

We saw in the last subsection, that higher order abstract syntax can be used to represent object 
language variables in LF. We saw that it takes some effort to prove the substitution lemma 
depending on the type family which makes use of HOAS. We also saw that the representation 
function establishes an identification between derivations in a deductive system and objects in 
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LF type theory, and between judgments and LF types. In this subsection we want to elaborate 
further on the similarities between deductive systems and LF type theory. 

In general derivations in a deductive system and objects in LF type theory may not be 
identified: we cannot expect that every object in LF type theory corresponds to a derivation. 
Consider the deductive system for the judgment x £ N, with two inference rules: 

lew 
•s 

z6ff x'eiv 

The judgment X G N can be represented in LF as 

nat:type 

the rules can be represented as the following two declarations: 

z    :    nat 
s    :    nat —> nat 

In this deductive system the derivation of z'" G IV has the form 

zG N 
 s 
z' G N 

z"G JV 

Z'"GW 

It is represented in LF using the signature and LF typing rules as 

s(s(s(z))) : nat 

Obviously z : nat has a derivation, namely an instantiation of the axiom rule z. On the 
other hand the ((Xx : nat. x) z) : nat does not correspond to a derivation in the system, but it is 
well-typed. This example shows, that there are more LF objects then derivations. The solution 
to this problem is to restrict the set of LF objects to canonical LF objects. We omit the details 
of how canonical elements are defined, the reader my consult [HHP93, Pfe92]. We define a new 
judgment: An object M is a canonical object of type A in context V: 

T\-M :CA 

For any deductive system, we should show adequacy: 

If M is a derivation in a deductive system for judgment A using possible free syntactical 
variables in f, then [f ] h \M] :c \A] 

If T h M :c A then there should be a derivation M of the judgment A and a context of variable 
declarations f, s.t. \t] = T, \M] = M and \A\ = A. 
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Adequacy is to be shown for all types and type families. It guarantees the existence of an 
isomorphism between deductions and LF objects, between judgments and types. If higher order 
abstract syntax is used, and the substitution lemma holds for the judgment involving HOAS, 
the isomorphism postulated in the adequacy theorem is called compositional. 

For the definition of the system MLF, we will need the notion of atomic types: 

Definition 2.6 (Atomic type) Let A be an LF type. A is called an atomic type iff A is 
canonical and A is not a U-abstraction. 

In the next subsection we will introduce the logic programming language Elf, and demon- 
strate how the example from section 2.1 can be represented in Elf by first representing it in LF 
type theory, and then interpreting the signature as a logic program. 

2.2.2    Elf 

In this section we give a very short overview about the logic programming language Elf. Then 
we describe the representation of the language T in LF which was introduced in section 2.1. 
In parallel, we give the implementation in Elf: At first we describe the representation and 
implementation of the syntax of the programming language T using de Bruijn indices. Then we 
represent and implement the notion of natural semantics and the notion of operational semantics 
in LF. Eventually we show the representation and implementation of the equivalence theorem. 
This presentation follows closely [HP92]. 

How to use Elf 

The process of programming in Elf proceeds in three stages. At the first state, the problem 
is formulated in form of a deductive system — as done in section 2.1. At the second stage 
the deductive system is represented in LF type theory: Adequacy and substitution lemmas are 
proven at this stage. We omit these theoretical considerations in this presentation and refer 
the reader to [Pfe92]. The judgment K h E *-)■ V for example is represented as the dependent 
type (feval K E V). Judgments are written in a very mathematical way, using mathematical 
symbols.LF types are written in the Roman font. At the third stage LF signatures are finally 
implemented in Elf. This step is quite straightforward: Programming in Elf corresponds to 
writing signatures in LF type theory. We write Elf source code in typewriter font: the LF type 
family (feval K E V) for example is implemented as (feval K E V). 

The syntax of Elf corresponds directly to the mathematical notation. The keyword type 
stands for the kind type. Let A, B be types and K a kind. A-abstractions are expressed using 
the notation [x:A]M. II-abstractions on the type level are written as (x:A)B and on the kind 
level as (x:A)K. We also make use of the arrow notation A -> B or A -> K, which corresponds 
to A —>• B and A —y K, respectively. 

LF signatures correspond to LF programs. A signature is a list of declarations. Let c : A 
be an object constant declaration and a : K a type constant declaration. The implementation 
in Elf is then of the form c : A. and a : K. For a more detailed description of Elf, consult 
[Pfe89, Pfe92]. 
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Representation and Implementation of T 

We will now present the representation of de Bruijn expressions. A de Bruijn expression does 
not depend on any other objects. Therefore we declare the type (exp) of kind (type): exp is a 
type constant. We will also refer to it as type constructor. 

LF 
exp    :    type 

il ar: 

Elf 
exp         :  type. 

The implementation in Elf is very similar: 

The object constants or object constructors of the type exp are defined as follows: 

LF Elf 
1 

t 
lam 
app 

exp 
exp —>■ exp 
exp —> exp 
exp —> exp —)• exp 

1 

lam 
app 

:  exp. 
:   exp -> exp. 
:  exp -> exp. 
:  exp -> exp -> exp. 

The object constructors 1 and f define the set of de Bruijn indices: 1 corresponds to index 
1, f corresponds to the successor function. It is of type exp —> exp, because it expects one 
argument: If N is an index, then (f N) is also an index. In our presentation we use f as postfix 
operator: We write (iVf) instead of (f N). 

Since T makes use of de Bruijn indices, we do not have to implement an explicit variable 
concept. A abstraction expects only one argument, an expression of type (exp). Application 
expects two arguments: The first argument is the function which is to be applied to the second. 

In section 2.1 we introduced the notion of values. A value is the closure of an environment and 
a de Bruijn expression. Environments depend on values. Both notions are mutually recursive. 
We will therefore first introduce the new types env and val. The object constructor empty 
defines the empty environment, ";" is the environment constructor and clo is the constructor to 
create closures. 

LF Elf 
env type env :  type. 
val type val :  type. 
empty env empty :  env. 
> env —> val —>• env i :   env -> val -> env. 
clo env -4 exp -4- val clo :  env -> exp -> val. 

Representation and Implementation of the Natural Semantics 

In this paragraph we describe the representation of the natural semantics of the language T. 
The judgment K h E <^-¥ V is represented by the dependent type feval. feval depends on 
three parameters: the current environment, the expression to be evaluated and the result of the 
evaluation. 
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LF Elf 
feval env —> exp —)■ val —> type feval env -> exp -> val -> type. 

In section 2.1 we defined four different rules for the evaluation judgment: 

K\-E^W 
ev_l ■ ev .shift 

K;W\-1^W K;W'\-Ej^W K\~AE^{K,AE} 

K\-Ei^ {K'} AE[} K\-E2^ W2 K'; W2\-E[^W 

evJam 

K h {Ex E2) M- W 
■ev_app 

Because of the derivations-as-objects paradigm, each rule is represented as an object constructor: 
The type of each constructor depends on the premisses of the rule and all free variables. The 
rules ev_l, ev-shift, evJam and ev_app are represented in LF as follows: 

LF 
evl :     ILK : env. UW : val. 

feval {K;W) 1 W 

evf :     ILK : env. TIE : exp. ILW : val. UW' : val. 

feval KEW 

-> feval (K-W) Et W 

evlam      :     ITI<f : env. UE : exp. 

feval K (lam E) {K (lam E)} 

evapp     :     ILK : env. ILEi : exp. UK' : env. UE[ : exp. ILE2 : exp. ILW2 : val. ILW : val. 

feval K Ei (clo K' (lam E[)) 

-> feval K E2 W2 

->■ feval (K';W2) E[ W 

 -» feval K (app ^ £72) W 

Due to the type reconstruction algorithm which is built into Elf we can omit the II closures 
in Elf. The encoding in Elf is much more efficient. Note, that the arrow in the Elf code is 
reversed for the sake of better readability. The program can be read like a Prolog program. 

Elf 
fev_l : feval  (K ; W)  1 W. 
f ev_~ :  feval  (K  ;  W)   (F ~)  W 

<- feval KFW. 
fev_lam :  feval K (lam F)   (clo K (1am F)). 
fev_app :  feval K  (app Fl F2)  W 

<- feval K Fl  (clo K' (lam Fl')) 
<- feval K F2 W2 
<- feval  (K'   ;  W2)  F1J W. 
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Representation and Implementation of the CLS Machine 

In section 2.1 we defined the general form of the CLS machine. We described the instruction set 
and the form of programs. Since a CLS machine is a state transition machine we also defined 
the notion of state. We will now give the representation of the various constructs in LF and the 
implementation in Elf. 

We have to declare four new types: instructions, programs, environment stacks and states. 
Recall that instructions, programs and environments contribute to the formulation of a state, 
which is the basic notion for the CLS machine. The CLS runs by calculating traceß of states. 
The final state represents the operational meaning of a de Bruijn expression, as described in 
diagram 2.1. The representation of the judgments in LF is straightforward. We obtain four new 
new type constructors: instruction, program, envstack and state. 

LF Elf 
instruction type instruction : type. 
program type program :  type. 
envstack type envstack : type. 
state type state :  type. 

Instructions can be formed in two ways: first de Bruijn expressions by themselves are in- 
structions. The function ev is an injective embedding function from the type of expressions 
into the type of instructions. Second a new instruction has to been introduced which combines 
subcomputations: apply. 

LF Elf 
ev          :    exp -4 instruction 
apply    :    instruction 

ev           :  exp -> instruction, 
apply     :   instruction. 

A program are defined as a list of instructions. The empty program is represented by done. 
& is the constructor to build up the list of instructions: 

LF Elf 
done    :    program 
&:          :    instruction —> program 

-4 program 

done   :  program. 
&         :   instruction -> program 

-> program. 

The notion of environment stack is important, because old environments have to be saved 
in case subcomputations are started, emptys represents the empty environment stack, ;; the 
constructor. 

LF Elf 
emptys    :    envstack 
;;              :    envstack —>■ env —> envstack 

emptys   :  envstack. 
;;           :  envstack -> env -> envstack. 

This completes the representation of the ingredients for the notion of state. Recall, a state 
contains the environment stack — a storage facility to store environments, the program — in 
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form of a list of instructions — and a storage facility to store results. We did not define a new 
type for the result stack, since it is only a stack of values which is already defined as env. The 
state constructor is called st. Here is the representation in LF and in Elf. 

LF Elf 
st :    envstack —> program —)• env 

-4 state 
st :  envstack -> program -> env 

-> state. 

Representation and Implementation of T's Operational Semantics 

In section 2.1 the notion of computation for a CLS machine was defined. A computation is 
a trace through the state space, ending in a final state. Traces were introduced as multi step 
transitions. A multi step transition consists of a sequence of single step transitions. Each single 
step transition corresponds to the execution of a single instructions. The operational semantics 
of T is specified by defining these single step transitions. A single step transition is defined as a 
relation between two states. We denote this relation by the infix operator =$>. It is represented 
as: 

LF Elf 
=> :    state —>■ state —> type => state -> state -> type. 

Now we represent the single step transition rules: s_l,s_shift,s_lam,s_app and s_apply. The 
information, if a single step transition is applicable or not, is stored in the types. Here is the 
representation of the rules: 

LF 
c_l :     UH : envstack. IIÄ": env. UW : val. IIP : program. 115 : env. 

st (H;;(K ; W)) ((ev l)kP) S => st H P {S;W) 

c-.t :     UH : envstack. UK : env. UW : val. IIP : exp. IIP : program. 115 : env. 

st {H;;(K;W')) (ev (F^kP) S => st (H;;K) (ev FkP) S 

cJam :     UH : envstack. IIÄ": env. IIP : exp. IIP : program. 115 : env. 

st {H;;K) (ev(lam F)kP) S =* st H P (5;clo K(lam F)) 

capp :     U.H : envstack. UK : env. IIFi : exp. IIP2 : exp. UP : program. 115 : env. 

st (H;;K) (ev(app Fx F2)kP) S => st (H;;K;;K) (ev Fj&ev F2&apply&P) S 

c-apply :     UH : envstack. IIP : program. 115 : env. IIÄ"' : env. UF{ : exp. IIW2 : val. 

st H (applykP) (S;clo K'(lam F[);W2) =* st (ff;;(#';W2)) (ev F[kP) S 

These five statements can be much easier represented in Elf.   The reason is again Elf's 
powerful type reconstruction algorithm. Here is the representation in Elf: 
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Elf 
c_l :   st  (H  ;;   (K  ;  W))   (ev 1 & P)  S 

=> st H P  (S   ;  W). 
c_~ :   st  (H  ;;   (K  ;  W'))   (ev  (F ~) & P)  S 

=> st   (H  ;;  K)   (ev F & P)  S. 
c_lam :   st   (H  ;;  K)   (ev  (lam F)  & P)  S 

=> st H P  (S   ;   clo K  (lam F)). 
c_app :  st   (H  ;;  K)   (ev  (app Fl F2)  & P)  S 

=> st   (H  ;;  K  ;;  K)   (ev Fl & ev F2 & apply & P)  S. 
c.apply :   st H  (apply & P)   (S  ;  clo K'   (lam Fl')   ;  W2) 

=> st  (H  ;;   (K'   ;  W2))   (ev Fl'  & P)  S. 

On top of the single step relation the multi step relation is denned. It is the transitive closure 
of the single step relation. A multi step is characterized by a start state and an end state. The 
representation of the multi step function is as follows: 

LF Elf 
* 

:    state —»■ state —> type =>* :  state -> state -> type. 

The constructor objects are represented in LF: 

LF 
id :     USt : state. 

St^St 
- :     USt: state. USt' : state. USt" : state. 

St => St' 

-»• st' 4 st" 
->St£ St" 

and implemented in Elf: 

Elf 
id :  St =>* St. 
** :  St => St' 

-> St'  =>* St" 
-> St =>* St". 

Next, we represent the operational meaning of a de Bruijn expression: Recall, that a de Bruijn 
expression E is mapped into the state space via the injection function t. Then a trace is 
calculated which ends in a final state. This final state is projected into the space of de Bruijn 
expressions via the function IT to obtain the operational meaning W of E. ceval represents the 
judgement K\- E =^k> W, with K environment. 

LF Elf 
ceval env —>■ exp —> val —> type ceval env -> exp -> val -> type. 
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The only constructor for ceval has the form: 

LF 
run     :     UK: env. UE : exp. U.W : val. 

st (emptys; ;K) (ev Ekdone) (empty) 4> st (emptys) (done) (empty;W) 
-> ceval K EW. 

run is implemented in Elf as: 

Elf 
run  : st  (emptys   ;;  K)   (ev E & done)   (empty) 

=>* st  (emptys)   (done)   (empty  ;  W) 
-> ceval K E W. 

This concludes the representation and implementation of the language T and its natural and 
operational semantics. As we will see in the next section, when representing T in CIC and Coq, 
the inference machine in Coq supports the user to derive meta theoretical result, for example 
the equivalence theorem 2.2. We can use LF as a representation mechanism, but Elf does not 
support the search for meta theoretical results. The representation of those results in LF is 
often possible, when the proof is done by structural induction. Typically these inductive proofs 
are done by case distinction over some derivation. The theorem is represented as a type and the 
different cases of the induction proof as constructors for this type. We show in the remainder 
of this section, how the theorem 2.2 in section 2.1 can be represented in LF and implemented 
in Elf. 

Representation and Implementation of the Equivalence Theorem 

We remarked earlier, that the proof of lemma 2.1 has to be formalized a little more, if it should 
be representable in a formal system. A more rigorous treatment of "How to append multi step 
transitions" is necessary. Because of its definition a multi step transition can be extended by 
prefixing it with a single step transition which ends in the start state of the transition. For the 
proof of case ev_app in lemma 2.1, two multi step transitions have to be concatenated. The next 
lemma guarantees that this kind of concatenation is always possible, i.e the concatenation of 
two multi step transitions yields a new multi step transition, as long as they end and start in 
the same state, respectively. 

Lemma 2.7 (append) For every two traces T : S => S' and T' : S' 4> S" there exists a trace 
R:S^ S". 

Proof: Easy proof by induction over T: 

Case: T = id. Therefore S' = S. Choose R = T'. 

Case: T = A~ T", with A : S => S'". By induction hypothesis we have a trace R' : S"' 4> S". 
Construct R = A~ R' and R : S 4> S" satisfy the condition. 

D 
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This proof can easily be represented in LF: First we have to represent the lemma in LF: The 
lemma is transformed into the type append 

LF 
append USt: state. USt' : state. USt" : state. 

St 4> St' 

-)• st? 4> st" 

->St£ St" 
->type 

which can be represented in Elf: 

Elf 
append St =>* St' 

-> St'  =>* St" 
-> St =>* St" 
-> type. 

Both cases of the proof are represented as constructors of a dependent type: 

LF 
apdjd :     USt : state. IlSii : state. UC1 : St 4> St. 

append id C C 

apd-jstep :     USt : state. USti : state. USt2 : state. 

UC : St 4> Sh. UC : Sti 4> St2. UC" : St =* St2. USt3 : state. UR : St3 => St. 
append C C C" 

-> append (R~ C) C {R~ C") 

We implement these constructors in Elf: 

Elf 
apd_id  : append (id) C C. 
apd_step : append (R " C) C (R 

<- append C C C" . 
C") 

As we have seen in section 2.1, the concatenation of two multi step derivations is necessary 
to prove the subcomputation lemma 2.1, which is necessary to proof the equivalence theorem 
2.2. We will now give a representation of the subcomputation lemma 2.1 in LF. The idea is the 
same as in the append lemma: The lemma is represented as type subcomp and the proof as the 
object constructors for this type: 

LF 
subcomp UK : env. UE : exp. UW : val. UH : envstack. UP : program. IIS : env. 

feval KEW 

-> st (Hy,K) (ev EkP) S 4> st H P {S;W) 

->type 
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Its implementation in Elf is similar: 

Elf 
subcomp • feval K E W 

-> st (H ;; K) (ev E & P) S =>* st H P (S 
-> type. 

; w) 

We will now give the representation of the different cases of the proof of lemma 2.1 in LF: 

LF 
SC_1 :     env —>■ val —> envstack -> program —> env —>■ 

subcomp evl (c_l~ id) 

SC f :     UK : env. UF : exp. UW : val. UKs : envstack. IIP : program. UKi : env. 

UDi : feval KFW. Ud : st (Ks;;K) (ev F&P) Ki 4> st Ks P (Ki;W). val -»• 

subcomp Di C\ -4 subcomp (evf Di)(c_ f ~ C\) 

SC Jam      :     env —> exp —>■ envstack —¥ program -> env -¥ 

subcomp evlam (cJam~ id) 

SC_app      :     UKs : envstack. UK : env. UF : exp. ITFi : exp. IIP : program. UKi : env. 

UK2 : env. UF2 : exp. UW : val. UWX : val. 

UC : st (Ks;;K) (ev (app F Fi)feP) Ki 4> st Ks (apply&P) (Ki;clo /T2 (lam F2);W). 

UC3 : st (Ks;;(K2;W)) (ev F2&P) Ä"x 4> st Ks P (A^Wi). 

ITC : st (Ks;;K) (ev (app F Fi)&P) ATi 4> st Ks P (ATi;Wi). 

nCi : st (Ars;;AT;;Ar) (ev F&ev Fi&apply&P) Ki 4> st (ATs;;Ar) (ev Fi&apply&P) (A^clo AT2 (lam F2)). 

UC2 : st (A^jÄ") (ev Fi&apply&P) (AV.clo tf2 (lam F2)) 4> st Ä"s (apply&P) (tfijclo K2 (lam F2);W). 

n£)3 : feval (K2;W) F2 W^. UD2 : feval K Fi W. UDi : feval K" F (clo AT2 (lam F2)). 

append C (c_apply~ C3) C 

—> append (c_app~ C\) C2 C 

—>■ subcomp D3 C3 

—> subcomp D2 C-2 
—> subcomp Z?i Ci 

-4 subcomp (evapp D3 D2 D{) C 

The result of the transformation into Elf is somewhat shorter: 
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Elf 
sc_i : subcomp (fev_i) (c_l " id). 

sc_~ : subcomp (fev_~ Dl) (c_~ " Cl) 

<- subcomp Di Cl. 
sc_lam : subcomp (fev_lam) (c_lam " id). 
sc_app : subcomp (fev_app D3 D2 Dl) C 

<- subcomp Dl Cl 

<- subcomp D2 C2 

<- subcomp D3 C3 

<- append (c_app " Cl) C2 C 

<- append C (c_apply " C3) C. 

The implementation of the equivalence theorem follows now trivially: 

LF 
cev .complete 

cevc 

UK : env. UF : exp. UW : val. 

feval KFW 

-> ceval KFW 

->type 

UK : env. IIF : exp. UW : val. UD : feval KFW.. 

UC : st (emptys;;/^) (ceval F&done) empty =>■ st emptys done (empty;!^). 

subcomp D C 

—> cev-complete D (run C) 

and finally its implementation in Elf has the form: 

Elf 
cev_complete 

cevc 
feval K F W -> ceval K F W -> type. 

cev_complete D (run C) <- subcomp D C. 

Execution in Elf 

Elf is a logic programming language. Signatures can be executed. We show the execution of the 
proof of the equivalence theorem. Assume we are given three A-expressions: 

Mi = (As. Ay. (x y)) 
M2 — (Az. Ay. x) 
M3 = (\x. x) 

Using adequacy we can represent the three A-expressions in LF: 

Mi   =    (lam (lam (app (11) 1))) 
M2    =    (lam (lam (11))) 
M3   =    (lam 1) 
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Next we determine the meaning of M = ((Mi M2) M3) according to the natural semantics. 
This is done by asking the following query: 

D : (feval empty ((Mi M2) M3) X) 

Note, that we use Mi,M2,M3 only as abbreviations for LF objects: This query contains only 
two free logical variables : D and X. Elf answers to this query with the following result: 

D   :  feval empty  (app  (app  (lam (lam (app  (1 ~)   1)))   (lam (lam  (1 "))))   (lam 1)) 

Elf answers this query with the following output: 

X = clo  (empty  ;   clo empty (lam 1))   (lam (1 ~)), 
D = 

fev.app (fev.app fev.lam fev_l  (fev_~ fev_l)) fev_lam 
(fev_app fev_lam fev_lam fev_lam). 

yes 

D corresponds to the proof, that the natural meaning of ((Mi M2) M3) is {(•; {•, A 1}), A It}. 
The equivalence theorem says that the operational meaning must be the same. Since we im- 
plemented one direction of the equivalence proof, we can transform D into an object, which 
corresponds to the proof that this value X is the operational meaning of D. Using the sigma 
type — available on the Elf toplevel — we can easily formulate the query as 

sigma  [D:  feval empty  (app  (app  (lam (lam (app  (1 ~)   1))) 
(lam (lam (1 "))))   (lam 1))    X]   cev.complete D E. 

The execution of this program yields: 

E = 
run  (c_app "  c_app "  c_lam " c_lam "  c_apply ~ c_lam " c_lam ~  c_apply 

c_app " c_" ~ c_l " c_l " c.apply " c_lam " id), 
X = clo  (empty  ;   clo empty  (lam i))   (lam (1  ")). 
yes 

The variable E represents the sequence of CLS-commands to calculate the result. The variable 
X represents the natural meaning of M. To check, if this is also the operational meaning, we 
can derive it by asking the following query: Note that Y is the only logical variable. 

run (c_app "  c_app " c_lam "  c_lam "  c_apply "  c_lam " c_lam " c_apply 
c_app " c_~  " c_l  " c_l "  c_apply " c_lam "  id) 

:  ceval empty  (app  (app  (lam (lam (app  (1 ~)   1)))   (lam (lam  (1 ~))))   (lam 1)) 

Elf verifies our expectation: 

Y = clo  (empty  ;   clo empty  (lam 1))   (lam (1 ')). 
yes • 

This concludes the section on LF and Elf. For more examples how to use LF type theory 
and the programming language Elf, we refer the reader to the literature [MP91, Pfe99, Pfe92, 
Pfe94c, Pfe94b, Pfe95]. 
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2.3    Calculus of Inductive Constructions and Coq 

In this chapter we want to present the representation of the language T in a different type theory: 
the calculus of inductive constructions (CIC). This signature is then represented in Coq. 

This section is divided into two subsections. In the first subsection we introduce the theo- 
retical foundation of the calculus of inductive construction. Originally, Coq was based on the 
"regular" calculus of construction [CH88, C+95, PM93] but the demand for the notion of in- 
ductive types and recursion led to an extension of the calculus and to a new version of Coq: 
V5.10. 

In the second subsection we represent the implement the language T in Coq. [C+95, LPM94]. 
Since LF is in some sense a subset of CIC, we are not going into a detailed representation of 
the different notions in CIC, but we reuse the results from the last section: We only show the 
representation of the example in Coq and how to use Coq as an assistant. We then will state 
the equivalence theorem in Coq and prove it using the inference component of Coq. 

2.3.1    Calculus of Inductive Constructions 

We give a brief overview about the theoretical foundations of the calculus of inductive construc- 
tions (CIC). This summary is based on the work of Christine Paulin-Mohring about inductive 
definitions in the system Coq [PM93] and the Coq user manual [C+95]. Some more work has 
been done in the area: [Hue88, DH94]. This subsection is divided into two paragraphs. The first 
paragraph treats the notion of terms, context, and environment. There are some differences in 
naming between LF and CIC. An environment'm CIC corresponds roughly to a signature in LF. 
The second paragraph presents the inference rules for Coq. 

Terms 

The basic language of CIC is the language of terms. Object, type and kind level can be recovered 
from the notion of terms by defining external judgments. Terms are defined as follows: 

Definition 2.8 (Terms) A term t in CIC can be formed as 

t : := c | s | x | (x : t{)t2 \ [x : ti]t2 \ {h t2) 

where c is a constant defined in the environment — which be introduced later —, s is a sort, 
(x : ti)t2 corresponds to a U-abstraction. [x : ti]t2 corresponds to a A-abstraction, (ti t2) stands 
for application. 

In LF A-expressions are defined on the object level. The variable bound by a A-expression 
has to be of a type A. In CIC, the A-expression [x : ti]t2 expects x to be of type t. Note, that 
[x : ti]t2 is also a term t. In LF, there are two different notions of u-abstraction: u-abstraction 
on the type level and u-abstraction on the kind level. In CIC there is only one u-abstraction, 
written as (x : t)t. Because of the recursive definition, there are many different layers of types. 
What is worse: self-referential constructions are possible. To avoid self-referential types, the 
notion of sorts is introduced. Every term must be of a sort. Since sorts are terms, a well- 
ordering of sorts is required:  This is done by introducing the notion of type universes.  Type 
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universes are indexed by natural numbers: Two indexed sorts are denned in CIC: Type(i) and 
Typeset(i). There are two basic sorts: Set and Prop. 

The next constructs to be defined are contexts and environments. Contexts are defined 
similar to LF: A context is a list of variable names and their types. Since there are no types, 
variables have to be typed with terms. 

Definition 2.9 (Context) T is a context :iff 

r : := ■ j T, x : t 

The environment represents all defined constants. Constants can be declared to be of type 
t: c : t. In LF two different kinds of constants were introduced by signatures. Type constants 
and object constants. Since there is no distinction between types and objects from a syntactical 
point of view, there is only one declaration of constants in CIC. Two non-standard constructions 
can be found in an environment: the declaration Def(r)(c := t\ : t2) serves to introduce new 
constants as names for already existing terms. We say constants are defined. The declaration 
Ind(r)[rp](r,r : Tc) serves to introduce inductive and mutually inductive types. We say, that 
by this declaration constants are inductively defined. In this definition the first parameter T 
represents the context, in which the inductive type is to be defined. YP stands for a set of 
parameters. This allows the definition of generic types. Yi stands for a context of definitions. 
In a simple setting one would expect T/ to contain only one element, namely the constant 
to be defined. The problem arises with mutually recursive types. By making Tj a context 
simultaneous definitions of mutually inductive types are possible. The context Yc represents a 
set of constructors. 

Definition 2.10 (Environment) E is an environment :iff 

E::=-\E,c:t\E, Def (r)(c := t:t)\ Ind{Y)[Y]{Y : Y) 

These are the basic notions we need to define the judgements and inference rules in the next 
paragraph. 

Rules 

In this section we will introduce briefly the judgements concerning typing. We follow the pre- 
sentation in [C+95], chapter 6. 

The first judgement is concerned with the well-formedness of an environment E and a context 
T which possibly depends on E. This judgement has the form 

WT(E)[Y] 

It corresponds to the LF judgement h Y ctx. 
The second judgement stands for well-typedness. It expresses that a term t is of type T with 

i, T terms built from constants and variables defined in E and Y. The judgment has the general 
form: 
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E[T] V-t-.T 

It would be beyond the aim of this chapter to give a complete overview over all typing rules. 
We will restrict ourselves to few of them. The aim is to sketch the idea. For a more complete 
presentation consult [C+95]. 

Well-formedness rules    First we present the base case.   The rule following says that the 
empty context and the empty environment are always well-formed. 

 wfemp 
w^(D)[D] 

From the definition of environment follows, that there are three different ways to declare 
constants: Declaration, definition and inductive definition. We examine well-formedness for 
definitions and inductive definitions: 

A constant definition is of the form Def (T)(c :=t:T). t,T are both terms, t stands for an 
object of type T. Since t is a term, it can take different forms. There is not one well-formed 
rule for definitions but one for every form of t. We present the rule in the case of t being an 
abstraction. 

WT{E;Def(T;x:U){c:=t:T);E')[A]    W.F(£)[r] 
 wfdeflam 
W.F(£;Def (r)(c := [x : U]t : (x : U)T); [c/(cx)](E'))[[c/(cx)](A)] 

This rule reads as follows: If E and T are well-formed, and the extension of environment E 
by a new constant definition c := t : T in a new context A is well-formed, then the environment 
E extended by the definition of c being [x : U]t of type (x : U)T is well-formed in A. [x : U]t 
corresponds to a A-abstraction, (x : U)T corresponds to the formation of a II-type. Since c can 
occur free in the remaining environment E' and the context A, all occurrences of c have to be 
replaced by c applied to x in E' and A. We remark, that t and T can contain free variables 
from context V. 

Next we address the problem of well-formedness of inductive definitions. Before we describe 
the rule, we have to define some more concepts: 

We have seen in LF that types and dependent types are also "typed". These types are called 
kinds. Since the distinction vanishes in Coq an auxiliary notion has to be introduced, the notion 
of sort and arity. A term t is and arity of sort s, when it is either a sort itself or a II-closure of 
this sort. Arities are therefore defined as: 

Definition 2.11 (Arity) T is an arity of sort s tiff 

T = s orT=(x:U)T' with T' arity of sort s 

In LF there is the notion of canonical forms. Without going into details, the canonical form 
of a type is always something like 

(a:i:ri)..(a;Jfe:rJfe)/t1...tn 
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This term is a type of constructor of /, because when instantiated appropriately, it generates an 
instance of type / t\...tn. We define the type of constructor more formally after the following 
example: 

Example 2.12 Consider the following example: Define exp as a type constant of sort type(l). 
Then the following term is an arity of sort type(l) in CIC: (e : exp)(u : exp) type(l); we can 
define a new type constant: 

eval : (e : exp)(t>: exp) type(l) 

eval is a dependent type. Object constants are also referred to as constructors in CIC. In the 
example evaLs : (e : exp)(u : exp)(d : eval e v) eval (s e) (s v) defines the constructor evaLs. 
(e : exp)(u : exp)(d : eval e v) eval (s e) (s v) is a type of constructor of eval. 

Here the formal definition: 

Definition 2.13 (Type of constructor) T is a type of constructor of I :iff 

T=(Iti t2 ... tn) orT={x: U)T' with T' type of constructor of I 

Finally we have to define the so-called positivity condition. This condition says that 

Definition 2.14 (Positivity condition) T satisfies the positivity condition with respect to a 
constant X :iff 

1. ifT= (T" t\...tn) then X does not occur in t\...tn 

2. ifT=(x: U)T' then U,T' satisfy the positivity condition with respect to X 

There is also a strict positivity condition: 

Definition 2.15 (Strict positivity condition) T satisfies the strict positivity condition with 
respect to a constant X :iff 

1. ifT = (T" t\...tn) then X does not occur in t\...tn 

2. ifT = {x: U)T' then X does not occur in U and T' satisfy the positivity condition with 
respect to X 

With these definition we can now address the well-formedness of inductive definitions. Let 
T, Tp, Tj, Tc be contexts. T, Tp are contexts in which the definition takes place, we do not need 
to examine their structure. Tj stands for the set of defined inductive constants and their types: 
Ti := a\ : A\\ ...;afc : Ak- Tc is the context which defines the constructors for the inductively 
types: YQ '•= c\ '■ C\\ ...cn : Cn. E is the environment. 

WT(E)[T]    {E\T;rP]\-Aj:Jj)j=1..k    (E[T; TP; Tj] h C,- : *).=i..» 
 wfind 

W-F(£;ind(r)[rp](r/:rc))[r] 

provided that 
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• s'j, S{ are sorts 

• aj, Ci are different names (j = l..k, i = l..n) 

• Aj is an arity of type s'j and a,- ^ V U Tp U £7, (j = l..fc) 

• Ci is a type of constructor of aj (for some j < k), which satisfies the positivity condition 
for ai..ak and c8- ^ T U Fp U 2? (i = l..n) 

This rule reads as follows: To prove the well-formedness of an inductive definition we have 
prove that first the environment and the context V are well-formed, that means that the setting 
in which the definition takes place is represented in CIC. Second, it has to be checked if the 
types newly introduced by the definition are actually types in the current setting. To do so, it 
must be checked that every Aj is of sort s'j, in the context r;Tp. Finally it has to be checked 
that the constructor types are types. Note that since mutual dependencies are possible, the 
context is extended by T/. We obtain r;rp;rj as actual context. The side conditions ensure, 
that every declaration in FQ contributes to the definition of a type in T/. 

Rules for well typedness: As mentioned above, besides the well-formedness judgment, there 
is also a well-typedness judgment: E[T] h t :T. This judgement corresponds to the LF judgment 
r hs M : A. It expresses the property, that a term t has type T in an environment E, and context 
T. In the following, we will present a few selected inference rules, which should serve for two 
purposes. First we want to show the relationship between well-typedness and well-formedness 
and second we want to present the most important features of the semantics. 

The following two rules show that if an environment and a context are well-formed, then it 
is possible to extract typing information from either of them: 

W.F(£)[r]    (x : T) G r WF(E)[T]    {c:T)eE 
 tpvar     tpconst 

E[T] \-x:T E[V] h c : T 

In the case of abstraction we obtain the following rule: 

E[T]\-(x:T)U:s    E\T;x:T\i-t:U 

E[T] h [x : T]t: (x : T)U 
tplam 

The rule reads as follows: If a A-expression [x : T]t is to be checked to be of II-type (x :T)U 
then two conditions have to be verified: First, {x :T)U must be a type, i.e. it must be proven 
to be of a sort s. This must be done, because there are types which look correct, but are not 
because of self-reference. Second, t must be of type U, assuming x to be of type T in context T. 

If the rules are read from top to bottom, we see that the rules represent a logic: The type 
(x :T)U can be read as a universal quantified formula. When (x : T)U is a well-formed formula, 
and a proof term for {x :T)U can be derived, then we consider (x :T)U to be true. The object 
[x : T]t can therefore be interpreted as a program or as a proof term of the statement forall x 
of type T, U holds. 

We address the problem of typing with inductive definitions: Assume that we are working in 
a context T with r parameters — defined in the context Tp. The context of inductively defined 
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constants is defined as Tj = ai : Ai...ak : Ak- For every inductively defined constant a& we 
define a set of constructor terms. All these constructor terms and their types are summarized 
in the context Tc = ci : Ci; ...cn : Cn. Let Ind(A)[T>](r/ := Tc) an inductive definition in the 
environment. Every type C; is a type of constructor of an a,j. The form of Ck is implicitly given 
as 

(*! : If)..(xr : T?)(yi : T?)..{ymi : r«) a,- t« .it« 

Variables introduced in the Il-closure of Cfc may depend on types which are defined in T/. 
These variables are called recursive. 

To perform a proof over a mutual inductively defined type, k properties Pi-.Pk have to be 
proven. The property Pi expresses something about the inductive type a;. It depends on all 
arguments of type a; — that is on /,• terms h-.t^ — and on the object the property p should 
be proven for. The destructor proof term of an inductive type has the form: 

(Pi...Pr) Match c with fi...fn end 

c is assumed to be constructed by one of the constructors c; : C; in Tc- Therefore, it must be 
of the form 

Ci qi..qr ax..ami 

The /,- represent proof objects of different cases of a derived induction principle. We will see 
shortly, how induction principles are generated. The operational meaning of this proof term 
is, that by means of the form of the constructor c,- the proof term /, can be selected, and the 
Match-expression can be reduced. This is called as i-reduction. A more detailed presentation of 
reduction is given in [C+95]. 

Now we address the definition of the typing rule for inductive definitions by itself. Assume 
we have a derivation of a term of a type defined within the inductive type: 

E[T] \- c: (au qi...qr h...ts) 

First we have to show, that the properties Pj's are well-formed types, that is, they must be of 
sort Bj, for j < k. We also have to show that the the sort of (a; qi...qr) is "bigger" than the sort 
Bi. We omit the details, the reader may consult [C+95]. Next we have to find proof terms /,• for 
every induction principle derived by the constructors cf. The induction principles are derived 
by a rather technical construction of {c : C}fj;;;^=: 

Definition 2.16 (Induction principle)   The induction principle is defined by 

{c:(a,-?i..;?rti...t/,.)}^;^    =    (P; h...tu c) 

{c:(x: T)C}%;;$;    =    (x : T){{c x) : C}%;;;% x non-recursive 

{c:(x: T)C}%;;$   =   (x : T){x : r}£;;;£ -► {(c x) : C}£;;;£    x recursive 

The first case says that an object of the type A; is replaced by the proposition P,. The 
second case expresses .that El-abstraction must be interpreted as universal quantification under 
the assumption that x is not recursive. If it is recursive, i.e. its type is defined by means of Ti, 
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the induction hypothesis has to be provided: this is expressed by the third case. We now sketch 
the typing rule for inductive definitions: 

E[T] hc:(au gl..gr h..t2)    (E[T] h P,- : Bj)j<k    (E[Y] h /,- : {(c,- gl..gr) : (Q qi..gr)}^)i<n 

E[T] h {PL.Pk} Match c with /i../„ end : (Pu ti..ttu c) 

The following example shows a simplified version of tpind: 

Example 2.17 Consider the simple inductive definition of the natural numbers: as before we 
define a type exp : type(l). The inductive type of natural numbers has the following form: 

1 := lnd(0)[0]((exp : type(O)) := (z : exp;s : exp ->• exp)) 

The environment consists of exp : type(l) andl. The variable P stands for the property we try 
to prove. It expects only one argument: a natural number: P : exp -» s, where s is a sort. The 
construction of the induction principles yields the following result: 

{z:exp}£xp    = (Pz) 
{s : exp ->• exp}£xp    = {s : (e : exp) exp}£xp 

= (e : exp){e : exp}£xp 4{(se): exp}£xp 

= (e:exp)(Pe) ->• (P(se)) 

Finally we describe a simplified version of the typing rule for induction: tpind. Note, that E 
contains only the inductive definition! and V is empty. We omit therefore E[T]. The version 
of the match rule for this example has the simplified form: 

h c : exp     h P : exp -»• s     h /i : (P z)     h /2 : (e : exp) (P e) ->■ (P (s e)) 

h (P) Match c with fuf2 end : (P c) 

This concludes our presentation of the calculus of inductive constructions. In the next 
subsection we describe Coq. 

2.3.2     Coq 

In this section we will present an implementation of the language Tfrom section 2.1 using Coq. 
As in section 2.2.2, we implement de Bruijn expressions, the notion of natural and operational 
semantics and the equivalence theorem. We will use Coq's inference engine to prove the append 
lemma and the equivalence theorem. 

How to use Coq 

Coq V5.10 is a proof assistant. It is a direct implementation of CIC. Coq has a very sophisticated 
interface to the user. Because an inference component is included in the distribution, the com- 
mand language of Coq is equipped with many features, which are not used in this presentation. 
There are at least two different ways to define inductive types: Inductively and recursively. We 
omit all details of how to use Coq, and refer the interested reader to [C+95]. In the remainder 
of this subsection we show how to use features of Coq when they are needed. 
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Implementation of T 

We implement de Bruijn expressions by the inductive type exp. It must be defined inductively, 
because app depends on exp: Inductive definitions are easily represented in Coq. Here is the 
implementation: 

Inductive 
exp:  Set  := 

top   :  exp 
I  pop   :  exp -> exp 
I   app   :  exp -> exp -> exp 
I   lam  :  exp -> exp. 

Environment and values have to be implemented as inductive types, too. Recall, that the 
notion of environment cannot be defined as a stack of expressions. An environment is a stack 
of values, values are closures of environments and expressions. Both notions have to be imple- 
mented by mutual induction. CIC and Coq support mutually dependent inductive definitions. 
Values are implement as type val. Environments are implemented as type env: 

Mutual Inductive env:  Set   := 
empty  :   env 

I   cons     :   env -> val -> env 
with 

val:  Set   := 
clo      :  env -> exp -> val. 

Implementation of the Natural Semantics 

In this paragraph we show the implementation of the evaluation judgement eval : env —>• exp —>■ 
val —>■ type. Recall, that the first parameter stand for the actual environment1. The second 
parameter represents the program to be executed. The third argument represents the natural 
meaning of the second. 

The evaluation judgment is implemented as the inductive type eval. Note that in terms of 
CIC eval is a type constant of the term env -> exp -> val -> Prop which is an arity of sort 
Prop. 

Inductive 
eval  : env -> exp -> val -> Prop := 

ev_top : (K: env)(W: val)(eval (cons K W) top W) 

I ev_pop : (K: env)(F: exp)(W: val)(W: val) 

(eval K F W) -> (eval (cons K W) (pop F) W) 

I ev.lam : (K: env)(F: exp)(eval K (lam F) (clo K (lam F))) 

I ev_app : (K: env)(K':env)(Fl: exp)(Fl': exp)(F2: exp)(W: val)(W2: val) 

(eval K Fl (clo K' (lam Fl'))) 

xin the sense of section 2.1 
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->  (eval K F2 W2) 
->  (eval  (cons K'  W2)  Fl>  W) 
->  (eval K  (app Fl F2)  W). 

All four cases correspond directly to the LF types, we introduced in section 2.2.2. It is 
noteworthy, that we do not use the additional expressive power of CIC. We represent LF types 
in CIC by implementing them in Coq. 

Unfortunately, Coq does not have an appropriate type reconstruction algorithm which would 
allow to omit the II-closure around the newly defined constructor types. It is easy to see, that 
the Coq implementation of our example lacks some elegance compared to the representation in 
Elf. 

Coq offers a certain kind of remedy for this problem: syntactic definitions. Syntactic defi- 
nitions help to hide unnecessary arguments of constants. Unnecessary in a way that Coq can 
derive the parameters which have been omitted by type inference. But one cannot omit n 
closures, when implementing types in Coq. We implement the following syntactic definitions. 

Syntactic Definition i_ev_top :=  (ev_top ? ?). 
Syntactic Definition i_ev_pop := (ev_pop ????). 
Syntactic Definition i_ev_lam :=  (ev_lam ? ?). 
Syntactic Definition i_ev_app :=  (ev_app ???????). 

Implementation of the CLS Machine 

In the first two paragraphs we described an implementation of T and an implementation of the 
natural semantics of T. We will now focus on the operational aspects of the language. Here is 
the implementation of the CLS machine. 

We need the notion of environment stacks. Environment stacks are represented as an induc- 
tive type envstack. 

Inductive 
envstack  :  Set   := 

emptys   :   envstack 
I   conss   :   envstack -> env -> envstack. 

We have seen in section 2.1, that there are two different versions of instructions. De Bruijn 
expressions are instructions and special keywords which can combine subcomputations are in- 
structions. 

The way how we represent instructions is as follows. We define a inductive type instruction. 
The first kind of instructions is defined using the embedding function ev. The instruction for 
combining the two subcomputation for application is represented by the constant apply. 

Inductive instruction  :  Set   := 
apply  :   instruction 

I   ev  :  exp -> instruction. 

A program is now viewed as a list of instructions, done signals the end of a computation. 
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Inductive 
program: Set   := 

done     :  program 
I  consp  :  instruction -> program -> program. 

A state consists of a stack of environments which stores backup copies of the actual envi- 
ronment, the program as an instruction list and a result stack — in form of an environment: It 
represents intermediate subcomputation results. States are implemented as type state. 

Inductive state:  Set  := 
st   :   envstack -> program -> env -> state. 

Implementation of T's Operational Semantics 

In this paragraph we implement the notion of computation. For this purpose we defined two 
type-families in section 2.2.2, which represent single step transitions, and multi-step transitions. 
Both notions lead quite naturally to the definition of program evaluation with respect to a CLS 
machine, that is the operational semantics. 

The type representing single step transitions need not to be defined inductively. For the sake 
of continuity, we implement it as the inductive type single: 

Inductive single  :  state -> state -> Prop  := 
c_top   :   (Ks:  envstack)(K:env)(W:val)(P:program)(S:env) 

(single  (st  (conss Ks  (cons K W))   (consp  (ev top)  P)  S) 
(st Ks P  (cons S W))) 

I   c_pop  :   (Ks:  envstack)(K:env)(W:val)(F:exp)(P:program)(S:env) 
(single  (st  (conss Ks  (cons K W'))   (consp  (ev  (pop F))  P)  S) 

(st  (conss Ks    K)   (consp  (ev F)  P)  S)) 
I   c_lam  :   (Ks:  envstack)(K:env)(F:exp)(P:program)(S:env) 

(single  (st  (conss Ks K)   (consp  (ev  (lam F))  P)  S) 
(st Ks P  (cons S  (clo K  (lam F))))) 

1   c_app  :   (Ks:  envstack)(K:env)(Fl:exp)(F2:exp)(P:program)(S:env) 
(single  (st  (conss Ks K)   (consp  (ev  (app Fl F2))  P)  S) 

(st  (conss  (conss Ks    K)  K)   (consp  (ev Fl) 
(consp  (ev F2)   (consp apply P)))  S)) 

I   c.apply  :   (Ks:   envstack)(K':env)(Fl':exp)(W2:val)(P:program)(S:env) 
(single  (st Ks  (consp apply    P) 

(cons  (cons S  (clo K'   (lam Fl')))  W2)) 
(st (conss Ks (cons K' W2)) (consp (ev Fl') P) S)). 

For better readability we introduce the following syntactic definitions for the single step 
constructors. 

Syntactic Definition i_c_top  := (c_top ?????). 
Syntactic Definition i_c_pop  := (c_pop ??????). 
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Syntactic Definition i_c_lam 

Syntactic Definition i_c_app 

Syntactic Definition i_c_apply 

=  (c_lam ?????). 
=  (c_app ??????). 
= (c_apply ??????) 

The multi step transition relation is only the transitive closure of the single step transition 
relation: It is implemented in Coq as an inductive type multi. It must be represented as an 
inductive type because consm depends on multi. 

Inductive multi   :  state -> state -> Prop  := 
id  :   (St:state)(multi St St) 

I  consm  :   (St:state)(St':state)(St" :state)(single St St') 
->  (multi St'  St") 
-> (multi St St"). 

This definition requires again some syntactic definitions: 

Syntactic Definition i_id :=  (id ?) . 
Syntactic Definition i_consm  :=  (consm ? ? ?). 

Finally we can define the operational meaning of a de Bruijn expression: we implement the 
inductive type ceval, which depends on the actual environment, the expression which is to be 
evaluated. The result is a value. Note, it is not necessary to define ceval, inductively. 

Inductive ceval   :   env -> exp -> val -> Prop  := 
run :   (K:env)(F:exp)(W:val) 

(multi  (st  (conss emptys    K)   (consp  (ev F)  done)   (empty)) 
(st  (emptys)   (done)   (cons empty    W))) 

->  (ceval KFW). 

Here again, we need to introduce a syntactic definition. 

Syntactic Definition i_run :=  (run ? ? ?). 

Implementation of the Equivalence Theorem 

In this paragraph we derive the one direction of the equivalence proof with support of the 
inference engine of Coq. We first state and prove the append lemma, which is needed in the 
proof of the equivalence theorem. 

The definition of the type multi is based on the idea, that a trace is defined if and only it is 
either empty or the first step of the trace is a single step transition and the rest is a trace. The 
append lemma guarantees that two traces can be concatenated. 

The formulation of the lemma is as follows. 

Lemma append: 

(multi AB) 

(A:state)(B:state)(C:state) 

-> (multi B C) -> (multi A C). 
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The proof of the theorem is straightforward. The only noteworthy step is the application of 
the consm constructor. Here the intermediate state has to be provided by the user. The proof 
in Coq has the following form. 

Intros A B C H. 
Elim H. 

Auto. 
Intros.  Apply consm with St'.  Auto. 

Auto. 
Qed. 

The command Intros applies four times the II-introduction rule. Elim applies a destructor 
rule to the inductively defined (multi AB). For a more detailed description of the commands 
consult [C+95]. 

The equivalence theorem states the following fact: When a de Bruijn expression F evaluates 
to a value W, in context K, then there is a computation trace of a CLS machine, i.e. K h 
F =$$> W. We need a stronger induction hypothesis, so we proved the subcomputation lemma 
2.1 in section 2.1. Here is the formulation of this lemma: 

Lemma subcomp: 
(K:env)   (F:exp)   (W:val) 
(eval KFW)  ->  (Ks:envstack)   (P:program)   (S:env) 

(multi (st (conss Ks K) (consp (ev F) P) S) 

(st Ks P (cons S W))). 

To make the proof easier, we provide the constants to the system, which should be automat- 
ically applicable. We do this by using the hint command of Coq. 

Hint c_top c_pop c_lam c_app c_apply id. 

Here is the proof. The proof again is straightforward. The problem of finding the proof fast 
lies in the hints the user has to give to the system. As the proof shows, 9 different states have 
to be calculated by hand and provided to system. This makes the proof quite complex. 

Intros K F W H.  Elim H. 
Intros. Apply consm with (st Ks P (cons S WO)). Auto. 

Auto. 

Intros. Apply consm with (st (conss Ks KO) (consp (ev FO) P) S). Auto. 

Auto. 

Intros. Apply consm with (st Ks P (cons S (clo KO (lam FO)))). Auto. 

Auto. 

Intros. 

Apply consm with (st (conss (conss Ks KO) KO) 

(consp (ev Fl) (consp (ev F2) (consp apply P))) S) . Auto. 

Apply append with (st (conss Ks KO) (consp (ev F2) (consp apply P)) 
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(cons S  (clo K'   (lam Fl')))). Auto. 
Apply append with (st Ks  (consp apply P) 

(cons  (cons S (clo K'   (lam Fl'))) W2)). Auto. 
Apply consm with (st  (conss Ks  (cons K'  W2))   (consp  (ev Fl')  P)  S).  Auto. 
Apply append with (st Ks P  (cons S WO)).  Auto. 
Auto. 

Qed. 

In section 2.1 we saw, that the proof of one direction of the equivalence theorem is a direct 
consequence of the subcomputation lemma: 

Theorem completness  : 
(K:env)   (F:exp)   (W:val) 
(eval K F W)  ->  (ceval KFW). 

Hint run subcomp. 
Qed. 

This concludes the presentation of the T in Coq. In the next chapter we will define the meta 
logical framework MLF, which can be used as the theoretical foundation of a proof development 
environment based on LF. 

2.4    Result 

In this chapter we showed, that Elf is a logic programming language based on LF. It does not 
offer any mechanism to use it as an automated theorem proving system. On the other hand we 
showed, that Coq performs very good in automated theorem proving issues, but it is too powerful 
to be used as a programming language. The aim of this thesis is to propose a system, which 
equips Elf with an appropriate meta logic. This meta logic should be so powerful, that proofs 
by induction can be handled easily. It should not be too powerful to prevent inconsistencies. 

We remarked that LF is not as powerful as CIC. For a more detailed investigation see [Bar92]. 
The representation of the example from section 2.1 in Coq followed closely the representation 
in LF. 

In the next chapter we will present such a meta logic for the Horn fragment of LF: It is 
called MLF. MLF can be seen as a sequent calculus on top of LF. It supports reasoning over LF 
signatures. Induction as a fundamental proof technique is represented by a special rule, the case 
rule. In contrast to the approach realized in CIC, we omit the generation of induction principles. 
Instead we allow recursion which usage is restricted to avoid the generation of non total proof 
objects. We believe that the explicit generation of induction principles limits the power of the 
inductive component, and we also believe that by omitting these principles the expressive power 
of the meta logic is increased. 

A interactive proof system for MLF on top of LF is not yet implemented. We show in chapter 
5 how MLF can be used to prove the meta theoretical results. 



40 CHAPTER 2.   MOTIVATION 



Chapter 3 

MLF 

In this chapter we introduce MLF. MLF is a meta logic which allows reasoning about the Horn 
fragment of the logical framework LF. The proof theory of MLF is given as an intuitionistic 
sequent calculus [Gal93], equipped with rules to reason about LF types and LF objects. Since 
LF is very frequently used to represent deductive systems, induction is a major concept in 
MLF. The notion of induction differs from others [C+95]. A standard approach would be to 
introduce induction in form of induction principles. An induction principle corresponds to proof 
by structural induction over the structure of a term. The main disadvantage of the generation 
of induction principles is the inflexibility which arises because induction hypothesis can only be 
applied to direct subterms. A lot of proofs can only be done by complete structural induction: 
the induction hypothesis must be applicable to any smaller term according to a well-founded 
ordering. If this kind of induction is used, the proof of being "smaller" has to be performed 
within the meta logic. 

The rules of MLF are equipped with proof terms. This is the motivation to prove the 
"smaller" relation on the basis of the proof terms — outside of MLF. Hence we define a rule 
which provides the induction hypothesis with this requirement formulated as a side condition. 
The second important rule to complete the treatment of induction is the case distinction rule. 
This rule allows to discriminate between different forms of LF-objects. Similar ideas can be 
found in [MN94]. 

This chapter is organized as follows: In the first section we introduce the language of MLF, 
the Horn fragment of LF and proof terms. We introduce basic notions like substitution and 
unification. In the second section we introduce the inference rule system for MLF and in the 
last we demonstrate how to use it. 

3.1    Language 

In this section we define the language of MLF. The calculus incorporates two levels of reasoning. 
On the meta level we reason about formulas and proof terms, on the LF level about types and 
objects of the Horn fragment of LF type theory. 

MLF is restricted to the Horn fragment of LF because of these two levels of reasoning: 
Because of the strict distinction between both levels, we define two totally distinct variable 
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concepts: One variable concept for the meta level and one variable concept for the LF level. As 
we will see, it is impossible to construct objects for a function type in LF in general. We will 
discuss this problem in more detail, when we describe the typing rules for MLF. 

When we reason in MLF, we will keep track of a set of assumptions and a goal, for which a 
proof term is to be constructed. Since function types of LF cannot occur as a goal, the notion 
of types in the Horn fragment of LF is split into two notions: LF types which can occur as 
assumptions, and LF types which can occur as goals. 

The distinction of two different LF types gives reason to discriminate over MLF formulae. We 
make a difference between formulae which occur as assumptions which we called data formulae, 
and formulae which occur as goals which we call goal formulae. We address now the exact 
characterization of the meta level and the LF level. 

Meta level: 

The meta level stands for reasoning about LF types and LF objects. The meta level by itself 
consists of two different layers. There are formulae, which represent properties of LF types and 
LF objects on the meta level. Furthermore, there are proof terms, which correspond to proofs 
of formulae. A proof term captures the computational content of a proof. It are called program. 

In the next paragraph we will introduce the LF level. Since LF types and LF objects are the 
entities which should be reasoned about, there must be an interface between the meta level and 
the LF level: We define therefore a non-standard kind of formula which represents LF types. 

If A is an LF type, then A denotes the corresponding formula. The function ~ is an 
embedding function of LF types into formulae. 

A different connection has to be established between LF objects and programs. LF objects 
are considered as proofs for embedded LF types. If M is an LF object, M is the corresponding 
program. 

The motivation for this construction is as follows: In general in logic a formula is provable 
if a derivation can be found using a complete and sound calculus. In this general case, there 
are only two possibilities: A formula is provable or not. The demands towards MLF are much 
more general in this respect. MLF should provide an answer for the question: Why is a formula 
provable? This immediately raises the question what it means for an embedded LF type to be 
true: An embedded LF type is considered to be true if and only if it is inhabited. The question 
for the Why can be answered by pointing to the witness object. 

Let M be a proof object which witnesses A to be inhabited. We write M as the representation 
of the LF object as a program: M is a proof of A if and only if M is an object of type A. A 
picture can make this more clear: 

Programs Formulae 

LF objects LF types 

The variable concept on the meta level and the variable concept on the LF level are two 
totally different concepts. They should not be mixed up. We denote the set of meta variables 
with X. To make the distinction between meta variables and object variables clearer, we denote 
meta variables always with uppercase letters and object variables always with lowercase letters. 
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We define now the meta logic. As mentioned earlier, the meta logic is based on first order 
intuitionistic logic, taking into account the Horn fragment of the underlying type theory LF. The 
language of formulae contains universal and existential quantification, conjunction, disjunction 
and implication. 1 stands for "True". First we define the most general notion of formula, we 
call it F: 

Formulae:   F   : :=   VX : A.F \ 3X : A.F | f\ A F2 | Fi V F2 \ Fx ->• F2 | 1 | A 

Then we restrict this concept to the restricted versions briefly introduced above: goal formu- 
lae and data formulae: The notion of LF type is divided into types which can occur as goal types 
AQ and types which can occur as a data types Aß .The goal formulae are defined as follows: 

Goal Formulae:   G   : :=   VX : AD.G \ 3X : AG.G \ Gx A G2 \ Gx V G2 | D -+ G | 1 | A~a~ 

and the data formulae are defined as 

Data Formulae:   D   : :=   VX : AG.D \ 3X : AD.D | Dx A D2 | £>i V D2 \ G ->- D | 1 | A~E 

Universal quantification, existential quantification, and implication have to be defined this 
way: this will become evident, when we present the typing rules for programs. Data formula 
can only occur as assumptions from which a goal formula is to be proven. Without going into 
details here, there will be some rules in the inference system of MLF which have to be restricted 
to certain formulae which exist in the intersection of goal formulae and data formulae: One rule 
for example will allow the actual goal to be transformed into an assumption — this is necessary 
to provide induction hypothesis as we will discuss later. Therefore we have to characterize 
an intersection set of goal and data formulae. Since goal formulae and data formulae may be 
constructed from goal types and data types, a notion of type must be established which describes 
the set of LF types, which are simultaneously representable as data types and goal types: This 
set is called Ap. It turns out, that these are exactly the atomic types. It is now straightforward 
to define the language C of core formulae, which are simultaneously goal formulae and data 
formulae: 

Core Formulae:   C   : :=   VX : AP.C \ 3X : AP.C \ d A C2 \ d V C2 \ d -> C2 \ 1 117 

All inference rules in MLF are decorated with proof terms. The inference rules concerning 
the provability judgment in MLF, which will be introduced in the next section, are decorated 
with proof terms which we call programs — to reflect the computational character: 

Programs:   P   : :=   X | (unit) | (rec X.P) | (fun X.P) \ (pair Px P2) \ (inl P) 

| (inr P) | (inx Px P2) \ (let Pi be X in P2) | (app Px P2) | M 

( case P of \ 
Q(l) => p(l) 

\ |    Q(») =» P(«) ) 

The case construct is defined using patterns Q. Ideally we try to achieve every possible 
program to serve as a pattern. We assume programs to be closed with respect to LF variables. 
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Therefore we have to restrict the set of possible patterns, to guarantee this assumption to hold: 
In the following we define patterns on the program level. The variable N refers to a pattern on 
the object level which we will define below. 

Program Patterns:   Q   : :=    (unit) | (pair Xx X2) | (inl X) | (inr X) | (inx Xx X2) \ ~N 

LF level: 

MLF is designed to reason about LF. Therefore we have to distinguish quite carefully between the 
LF level and meta level. We address now the definition of the LF level. We distinguish between 
objects, types and kinds. Note, that the Horn fragment of LF type theory is a straightforward 
restriction of LF type theory. As introduced in section 2.2.1 we use x to denote LF variables, 
c to denote object constants and a to denote type constants. The object level of LF has to be 
extended with a projection function: Programs can be used as objects. Consider the following 
short example: 

Example 3.1 Let S be an LF signature defining two type constants: the constant exp which 
stands for natural numbers and the constant val which represents a judgment saying that an 
expression is a value, val is a dependently typed constant. E also defines the object constants 
zero z and the successor function s. See [Pfe92] for more detail. Assume that there is a meta 
variable X which represents a proof term for the formula exp. This reads as: X stands for a 
witness, that exp is inhabited, moreover it represents a proof object of the form M. 

The objective is to express the following statement on the meta level: if X is an expression 
and X is a value then the successor of X is also a value. Assume we have X, a proof of the 
formula exp. How can we express the second assumption, that X is a value? On the LF level it 
is quite clear how to do it: If x is a object and y is an object of (val x) then we can find a z in 
(val (s x)). The direct approach to represent "X is a value" by (val X) does not work: X is not 
an object. Since an object is expected at this position, X has to be converted into an object: We 
write X_ to express this conversion: The form of the second assumption is therefore (val JQ ■ 

Finally, we can specify the goal, namely that the successor of X is also a value. Here we 
transform the program X on the object level with the projection function and apply the constant 
s to construct the successor. We then have to prove that a proof object can be constructed for 
(val s 20- 

This example motivates the definition of the projection operator _j_. It suggests, that it 
should be enough to restrict the domain of _j_ to meta variables. We will see, that this might 
not be enough: By substitution application meta variables can be instantiated with whole 
programs. That means an object of the form X may be instantiated to P_ under a substitution 
which replaces X by P. We examine this issue further in section 4.1. With the presence of the 
projection function, the diagram from above can be refined: 

Programs Formulae 

LF objects LF types 
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Note that j_ is the inverse operator to ~ on objects of the LF level: For every LF object M 
we expect (M) = M. 

We will now define the language for kinds and types. The problem of the projection operator 
will be revisited when we define the language of objects. In LF types are defined as 

Types:   A   : :=   a \ (A M) \ Ux : Ax. A2 

In the description of the the meta level, we introduced the type Ap, which is simultaneously 
a goal type and a data type. Ap is defined to represent atomic types. We write AQ for goal 
types and AD for data types. The difference between AG and AD is, that no II-types are allowed 
in the definition of AQ. AQ is therefore completely subsumed by AD- We define AQ also as a 
set of all atomic types. AD is defined to be either an atomic type or an Il-type: 

Atomic types: Ap 

Goal types: AQ 

Data types:       AD 

a I (Ap M) 

AP 

Ap I Ux : AQ- AD 

II-types can be only defined as data types. The corresponding kind must have the same param- 
eter type as the Il-type: AQ: 

Kinds:   K   : :=   type \Ux : AQ. K 

The following lemma states that it is justified to call Ap, AQ and AD types: 

Lemma 3.2 (Restricted types are types) Every atomic type is a type, every goal type is a 
type and every data type is a type. 

Proof: Structural induction. □ 

This lemma can be used to prove that G, D and C are formulae: 

Lemma 3.3 (Restricted formulae are formulae) Every goal formula is a formula, every 
data formula is a formula and every core formula is a formula. 

Proof: Structural Induction. Use lemma 3.2 D 

We address now the definition of the language of objects: It is noteworthy to point out 
that the projection operator collapses the strict distinction between meta level and LF level: So 
far goal formulae only depend on LF types. LF types depend only on LF objects because of 
dependent types. LF objects can depend on programs because of the projection operator. This 
implies that formulae, types, and objects may depend on programs and programs may depend 
on objects again. Therefore, the definition of objects as 

Objects:   M   : :=   P\x\c\\x:AG.M\(M1M2) 

is too general. Figure 3.1 visualizes the dependencies between objects. The dashed arrows show 
that programs can depend on objects, objects can depend on programs etc.  The objective is 
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Programs Objects 

Embedding Objects 

Embedding Pure Objects 

Figure 3.1: Possible Embeddings 

to remove these dependencies. To restrict the dependencies, objects should only depend on 
program variables, not on programs by themselves. The solid arrows in figure 3.1 show this. 
Objects which satisfy this condition are called pure objects: 

Pure Objects:    M X | x | c | Xx : AG. M I (Mi M2) 

Note, that x is an object variable, defined by the LF level variable concept. The motivation 
for the word pure results from the avoidance of mutual dependencies between object and meta 
level. We call types Ap, AQ, AD pure types and kinds K pure kinds if the objects on which they 
depend are pure objects. Programs P, which depend on pure objects all called pure programs 
and similarly formulae G, D, F, which depend on pure types are called pure formulae. 

Lemma 3.4 Every pure object is an object, every pure type is a type and every pure kind is a 
kind, every pure program is a program, every pure formula is a formula. 

Proof: follows easily from the definition. D 

The distinction between pure and impure objects is not trivial. There are objects which are 
not pure: eval (funX. X)(s E) V_ for example is equivalent to eval (s E) V_ with a suitable 
reduction ordering. Reduction may turn non pure programs into pure ones. 

In the example 3.1 we mentioned, that substitution may destroy the purity property. In the 
next section we develop the theory of MLF for objects — not necessarily pure — in section 4.1 
we discuss the effects of restricting MLF to pure objects. 

An even more restricted notion of object serves as pattern for the case program we introduced 
on the meta level. We call this patterns object patterns N. It must be prevented that during 
a matching operation programs with free LF variables are matched with meta variables. The 
matching operation will be denned in section 3.1.3. Consequently object patterns may not 
contain free LF variables, or A-abstractions. We also restrict the use of constants in so far as an 
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object pattern may only consist of one constant c applied to a set of projected meta variables. 
The formal definition is as follows: 

Object Patterns:   N   : :=   c\(NJQ 

As introduced in [HHP87, HHP93] LF-signatures are used to define object constants and 
type constants. The syntactic definition of a LF-signature is as follows: 

Signature:   E   : :=   • | E, c : AD | E, a : K 

It is a slightly different definition from the one we introduced in section 2.2.1. From now on, 
we always consider E to be given and fixed. 

3.1.1    Substitutions 

In the following we introduce the concept of substitution. We are dealing with two different kind 
of substitutions. One kind of substitution replaces meta variables by programs — this is called 
a meta level substitution — the other object variables by objects — this is called an object level 
substitution. 

We denote the empty substitution with "•", and the constructor with ",": Meta level substi- 
tutions are denoted with 0, object level substitutions with 9. 

Meta level substitution:      0    : :=   • | 0, P/X 

Object level substitution:    9     : :=    ■ \ 6, M/x 

Next, we define the union operator for substitutions, which should not be mistaken for 
concatenation. Let 0 = -,Pi/Xi..Pn/Xn and ^ = •,Q\/Y\..Qm/Ym, the X;'s and the Yj's not 
necessarily distinct. Then we define 

euf:= ;P1/X1..Pn/Xn,Q1/Y1..Qm/Ym 

We remark that U is not a commutative operation. This will become evident when we formalize 
substitution application. 

The union operator is defined for two object level substitutions 0 = -,Mi/xx..Mn/xn and 
ip = -,N\/y\..Nm/ym, the x^s and the y/s not necessarily distinct as 

0\Jil>:= ■,Ml/xl..Mn/xn,Nl/yl..Nm/ym 

Substitution application on the meta level has the form [©](•), substitution application on 
the object level has the form {#}(•)• From now on we omit the leading "•," of non-empty 
substitutions. 

Concatenation of substitutions is defined like function application. Two application of sub- 
stitutions are concatenated, by applying one after the other. We have to define concatenation 
for meta level substitutions 

Definition 3.5 (Concatenation for meta substitutions) Let a be a program, formula, ob- 
ject or type. Let 0,$ substitutions: We define 8 o $(a) := [0]([\P](a)). 
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and for object level substitutions: 

Definition 3.6 (Concatenation for object substitutions) Let a be object, type or kind. 
Let 6, ip substitutions: We define 6 o if)[a) := {^}({V'}(Q;))- 

This definition is different from the one Wayne Snyder [Sny91] uses in his book: He defines 
6 o 1(a) as ty(@(a)). Since this change of order can easily lead to confusion we decided the 
order to remain invariant. 

Meta level substitutions 

Since programs, formulae, objects, types, and kinds can depend on meta variables, the notion 
of substitution has to be extended to all of them. We obtain five different judgments, three of 
them serve to replace meta variables in objects, types, and kinds, the other two serve to replace 
meta variables in programs and formulae. 

[e]object(M)     = =   M 
[©]type(A)     = =   A 
[Ohnd(K)     = =   K 

L^M program 1/ J     = =   P 
[0]formula(G)     =     G 

We first define meta level substitution on the LF level: [0]object, [0]type and [0]kind- We will 
give the definitions in form of equations: 

Definition 3.7 (Substitution on objects) 

rQ,        ,p) (M ifP = X ande(X) = M 
I    V^\program\^)     else 

[@]object{x) =     X 
[e]object(M1 M2) =     ([e]oWed(Mi) [&\object{M2)) 

[0]object(Az : A. M)   =   Xx:[e]type(A).[e]object(M) 

We could have replaced the first equation by 

[0]object(£)     =     [0]program(-P) 

It is easy to see, that both formulations are equivalent with respect to a conversion rule 

— Epsilon 
M = M 

which justifies the following general equation. 

[0]objectQQ = ([0]program(X)) =K=M 

Note that the conversion rule is non-standard. Under the assumption, that the programs which 
define 0 are normal with respect to this reduction rule, the result of the application is guaranteed 
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to be normal, too. In this case, we do not need the conversion rule. Therefore it is not necessary 
to incorporate this reduction rule into MLF, as long as meta level substitution performs this 
reduction implicitly on objects. We will discuss this in more detail in section 3.2. 

Next, we define substitution application for types. The definition is straightforward. It 
subsumes the definition of substitution application on the atomic, goal and data types because 
of lemma 3.2. 

Definition 3.8 (Substitution on types) 

[0] type (a) =    a 
[&]tyPe{Ux : Ai. A2)   =   Ux : [e](ape(Ai). [Q]tyPe{A2) 

[Q]type(AM) =   ([Q]type(A) [eUject(M)) 

The substitution application on kinds is defined similarly straightforward: 

Definition 3.9 (Substitution on kinds) 

[0]fcmd(type) =   type 

[e]kind(nx :A.K)   =   Ux: [Q]type(A). [&\kind{K) 

Now we will address the definition of meta level substitution application to programs and 
formulae. Since formulae can contain free meta variables, the definition of the substitution 
application has to be carried out with some care: the renaming of variables has to be done 
explicitly in all cases where variables are bound by formulae or programs: 

Definition 3.10 (Substitution on formulas) 

[®]form«la(VX : A.G) =   VY : [Q]type(A).[@, Y/X]}ormula(G) 

[QhrmuUlX : A.G) =   3Y:[e]type(A).[@,Y/X]formula(G) 

[0]/ormu/o(Gl A G2) =     [&\formula(Gl) A \ß]jormula{G2) 

[®\formula{Gl V G2) =     [®]formula{Gl) V [®]formula(G2) 

[®]formula(Gl —> G2) =     [&]formula(Gl) —> \ß]jormula{G2) 

[@]/ormuZa(l) =1 

[®]formula{A) =     [&]type(A) 

where Y is a new variable. 
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Definition 3.11 (Substitution on programs) 

l'\program\J*-) 

[Ü, rI I \program\-f* ) 

l&jprogram (Unit J 

L^-'Jpropraml.^'SC A..r) 

[Ö]program(funX.P) 

[0]propram (pair -Pi P2) 

[t7jpf0jrram(ml rj 

[®Jp)-ogram(inX Pi P2) 

/ case P of 

X 

\ P ifX=Y 
I    l/"Mp'"o<;raml,^)     CISC 

unit) 

recY.([e,Y/X]program(P))) 
funy.([e,y/x]pr03ram(p))) 

pair ["Jprogram(Pl) [©\pr0gram\P2)) 

inl [0]proaram(P)) 
inr fc» program (P)) 

[0] program 

PC1 

\ Q(») =>. p(«) ^ 

[©]proffram(le't Pi be X in P2 

[0]pro3ram (apP Pi P2) 

[9] program M 

mx [t/Jpropram (-'lj L^Jpropraml/2J J 

case [üJpTOgram(i J 01 
[^l]program(Q{1)) => [6 O *lWam(P(1>) 

V   I      [*n]pr03ram(Q(n)) =* [6 O *nWam(P(n))   / 
(let [Q\program(Pi) be y in [G,y/X]program(P2)) 

(app \ß\program\Pl) [©JprograroiPj)) 

[e]object(M) 

where Y is a new variable. In the case case, let {X^.-X^} = Free^ ') the set of free variables 

occuring in the pattern P$ ', *&k = Y^/X^..Y^k/X^k a variable renaming substitution, where 
Fp.y^ are new variable names. 

We call a substitution pure if all programs, which define the substitution are pure. Purity 
of the participating programs is not enough as we will see in section 4.1. A stronger notion is 
required: We call a substitution strictly pure, if its application cannot create something impure. 
The definition is as follows: 

Definition 3.12 (Strictly pure substitutions) A substitution 0 is called strictly pure iff for all 
X e dom(e): 0(X) = Y or Q(X) = M with M pure. 

3.1.2    LF level substitutions 

LF level substitutions replace LF variables by LF objects. We assume, that programs and 
goals are closed with respect to object variables. Therefore we only have to define object level 
substitution for objects, types and kinds. 

Definition 3.13 (Object substitution on kinds) 

{0}kind{type) =    type 

{9}kind(Ux : A. K)   =   Ux':{0}type{A).{eo(x'/x)}kind(K) 

where x' is a new variable name. 
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Definition 3.14 (Object substitution on types) 

{0}tyPe(a) =   a 
{9}type(Ux : AL A2)   =   T\x' : {9}type{A1). {9 o (x'/x)}type(A2) 

{9}type(AM) =   ({9}type(A) {9}object(M)) 

where x' is a new variable name. 

Definition 3.15 (Object substitution on objects) 

VJ object\%) =     % 

rn   an   I I   \ \   M if X = V 
{e,M/yUM*)     = ( {eUMx)  'else 

{9}object(c) =     C 

{9}object(R) =     P 

{9}obiect{^x :A.M)   =   Xx' : {9}type(A). {9 o {x'/x)}object(M) 

{9}object(Mi M2)        =   {{9}object{M{) {9}object(M2)) 

where x' is a new variable name. 

We observe, that the only non-standard case is the application of a substitution 9 to a 
projected program. Because of the assumption that P is closed with respect to object variables, 
the result of the substitution application is P. 

In the remainder of the thesis we omit the subscripts, indicating which substitution appli- 
cation to take: Instead of writing [O]program(-P), we write simply as [0](P), instead of writing 
{0}type(A) we write {9}(A). 

3.1.3    Unification 

We define now the notion of unification. Unification will play a role in the definition of one of 
the typing rules for programs. Unification is based on meta level substitutions only. 

We speak in this paragraph of terms. A term is either a program, a formula, an object, a 
type or a kind. A substitution 0 is called a unification of two terms, if it makes both terms 
syntactical equal. 

Unifications can be ordered. We define the "more general relation" for substitutions: A 
substitution is called more general then another it the latter can be derived from the former, by 
further instantiation of free variables. More formally: 

Definition 3.16 (More general relation:) We say that 0 < $ iff there is a substitution #, 
sl$o0 = $. © < \P reads as 0 is more general than $. 

A general observation is, that solutions of a first order unification problem are ordered with 
respect to the more general relation. The existence of a least element in this order is guaranteed 
[Sny91]. This substitution is called the most general unifier. The most common first order 
unification algorithms, like the Robinson algorithm or the unification algorithm of Martelli- 
Montanari [AM82] are guaranteed to find the most general unifier. In the higher order case, the 
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notion of most general unifier becomes suddenly insufficient. A higher order unification problem 
can have arbitrary many general unifiers, which are not instantiations of each other. 

Even though MLF as we introduced it in this section resembles a first order language, its 
connection to LF destroys the first order property. The unification problem turns out to be 
more complicated then simple first order unification. 

We are not going into details of unification problems, the reader is referred to [Sny91]. All we 
need for our purposes is the notion of a unifier on the LF type level and the notion of matching 
on the program level. In this thesis we adopt Wayne Snyders view, of a unification problem 
being given as a set of equations to be solved. 

Definition 3.17 (Unifier) Let Ai,Ä2 two LF types. 0 is called a unifier of A\ and A2 iff 
Q(Ai) = 0(A2). We write 0 = unify(A1 « A2). 

Definition 3.18 (Matching) Let P be a program, Q be program pattern. 0 is called a match- 
ing ofP and Q iffQ(P) = @(Q).  We write 0 = match(P w Q). 

If there is a matching between a program P and a pattern Q one says that Q matches with P. 

3.1.4    Context 

For the definition of sequents which will be introduced in the next section we must provide the 
notion of context. As in the case of substitution we have to distinguish between two different 
kind of contexts. There is a context defined on the meta level which is denoted with T. And 
there is the notion of context on the LF level which is denoted with A. 

A meta context declares meta variables as assumed proof objects for corresponding data 
formulae. The formulae can be seen as meta types of program variables. Note that we choose 
"G" as a separator between a meta variable and its data formulae in order to prevent confusion 
with contexts as used on the LF level. 

Definition 3.19 (Meta context) 

Meta context:   T    : :=    • | T, X e D 

Contexts which are constructed from only pure data formulae J9's are called pure contexts. 
The LF level context is defined similarly to the meta level context: Meta variables are replaced 
by LF variables, data formulae are replaced by data types, and the separator symbol is ":". 

Definition 3.20 (LF context) 

LF context:   A   : :=   • | A, a; : AD 

We define the notion of support and the notion of free variables of meta and LF contexts: 
The domain of a context is a set of variable names which are introduced by the context, and 
the free variables of a context, are the variables which occur free in formulae and types. 
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Definition 3.21 (Support of a context) Let Y be a meta context, A be an LF context. 

dom(-) = 0 

dom(T,IeD) = {I}U dom(T) 

dom(A, x : AD) = {x} U dom(A) 

The set of free variables is similarly defined: 

Definition 3.22 (Free variables in a context) Let T be a meta context, A be an LF context. 

Free(-) = 0 

Free(T,X G D) = Free(T) U Free(D) 

Free(A, x : AD) = Free(A) U Free(AD) 

We will not define the set of free variables for formulae, programs, types and objects. The 
definition is standard. 

The concatenation of two contexts is written as Ti, r2 on the meta level and as Ai, A2 on 
the LF level. The overloading of the constructor "," has an advantage and a disadvantage. 
The disadvantage is, that it cannot be uniquely determined what "," constructs. On the other 
hand by using "," as context union we save new notation which makes it easier to digest the 
formalism introduced in the next sections and chapters. Meta context concatenation is defined 
by the judgement Ti, T2 = T3. 

r1,r2 = r3  concmetaemp     concmetanonemp 
iV = ri T1,v2,xeG = T3,xeG 

LF context concatenation is defined by the judgement Ai, A2 = A3. 

Ai,A2 = A3 
concobjemp     concobjnonemp 

Ai,- = Ai Ai,A2,a; € A = A3,x £ A 

Contexts can be also subject of substitution application. We have to introduce a new judgement: 
We write 

[0]context(r) 

for the application of substitution to a meta context. The inference rules are as follows: 

Definition 3.23 (Substitution on context) 

substctxemp 
L^M co ntext\') — 

[0]con<erf(lj = T       [@]formula{G) = G 

[Q]conteXt(r,xeG) = r',xeG' 

[0]conJerf(r) = r 

substctxin   X £ dom(Q) 

[0] context (I\X G G) — r 
- substctxnotin   X G dom(Q) 
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This definition may seem a little peculiar: Substitution application on contexts is not per- 
formed in a declaration by declaration manner, but meta variable declarations can be removed. 
0 must be seen as a refinement substitution, that is variables in Free(Q) are refined by its 
application. When all free occurrences of a variable X are removed, then the declaration of X 
in the context is unnecessary. Finally, we define the application of meta level substitutions to 
LF contexts: 

Definition 3.24 (Substitution on object context) 

■substobjctxemp 
\ß]objctx{-) 

;eWte(A) = A'   [0]/ormu/a(A) = A! 

[6]o6jcte(A, x:A) = A',x:Ä 
su bstobjctxnonem p 

It is easy to see that substitution has the following property: Extracting typing information 
from a context and substitution application are associative. Here is the lemma without proof: 

Lemma 3.25 

[Q]conteXt(T)(X)     =     [e]formula(r(X)) (3.1) 

[eU-cte(A)(aO   =   {e}type(A(x)) (3.2) 

In the next section we will define typing rules, which distinguish between well-formed and 
ill-formed contexts. 

3.2    Reduction relation and Evaluation 

In this section we state the reduction relation of LF objects, LF types, and LF kinds. We also 
propose a reduction relation for programs. As remarked earlier, programs can be seen as an 
extension of the simply-typed A-terms. Hence, ß and r\ reduction are reduction rules. For the 
other operational programs, we define more reduction rules. From the theory of the A-calculus it 
is well-known, that A-terms might not reduce to normal forms. Evaluation orderings are defined 
which motivates the notion of canonical forms. At the end of this section we define an inference 
rule system for an evaluation judgment based on the eager evaluation ordering. 

3.2.1    Reduction Relation for LF Objects, LF Types, and LF Kinds 

In the original definition of the logical framework LF, a congruence relation between objects, 
types and kinds is defined. We denote the congruence relation between kinds with K\ = K2, 
between types with APi = AP2) AGi = AG2, ADi = AD2 and between objects between as 
Mi = M2. In the next subsection we present a reduction relation for programs. Since projected 
programs are objects, there is a mutual dependency between programs and LF objects, which 
must be expressed in the definition of the reduction relation. This dependency destroys the clean 
distinction between LF and meta level. This is why we decided to restrict the reduction relation 
on programs to syntactical identity. This way, we manage to preserve the clean distinction. 
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The notion of reduction is necessary because in the simply typed A-calculus, A-terms are to 
be considered equal if they are either /^-reducible or ^-reducible to each other. This observation 
applies to the level of LF objects. We have the following two rules: 

objbeta 
(Xx : AG. M) M' = {•, N/x}{M') 

 objeta 
{Xx : AG. (M x)) = M 

We observe that even so = is defined only on LF object level, it will have effects on types 
and on kinds. Types and kinds are depending on objects, so it is necessary to define a notion of 
equivalence on types and kinds. We can define a set of rules which ensures reflexivity, symmetry, 
and transitivity of =. We are not giving the rules here, the reader is referred to [HHP93]. At 
last we have to make sure that = is a congruence relation. We do not give the rules for kinds and 
types, they remain as described in [HHP93]. The set of rules for objects must be extended, due 
to the presence of projected programs or meta variables. The following rules remain unchanged: 

AG = AG' 
objlamA 

Aa: : AG. M = Xx : AG . M 

— -\/f> M = M' 

Xx : AG. M = Xx : AG. M' 

Mi = M[ 

objlamB 

Mi M2 = M[ M2 

M2 = M'2 

Mi M2 = Mi M'2 

objappA 

objappB 

The new rule is the rule which reduces projected programs. If an object is constructed by 
the projection of a program onto the LF level, only syntactical identical programs are considered 
to be equivalent. In the case of pure objects, this is no restriction: pure objects only depend on 
projected meta variables: 

•objprg 
X = X 

The reduction rule in the impure case has therefore the form: 

 objprg (3.3) 
P = P 
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3.2.2    Reduction Relation for programs 

We know from the A-calculus that syntactically different A-terms are considered to be seman- 
tically equal. This notion is made more precise by a so called reduction relation. A-terms can 
be rewritten using reduction rules. /3-reduction and ^-reduction are the only two rules defined 
for the A-calculus. Programs are very similar to A-terms. The program (fun X.P) corresponds 
to A-abstraction. In this section we will restate ß and r\ reduction for programs, and extend 
the set of reduction rules for other programs. Note, that we omit all typing information from 
the programs. We can do that, because we can assume the programs always to be well-typed. 
The typing rules for programs are defined in the next section. The second assumption is, that 
programs do not contain any occurrences of free meta variables. 

Under this general assumption we define now the inference rules for the reduction relation 
for programs: P = P. We define reduction rules for application, function, case distinction, 
assignment, embedding and recursion. 

/3-reduction 

The first rule is /3-reduction. If a function is applied to a program Q, it can be reduced to body 
of the function by replacing the bound variable by Q. 

Beta 
(fwiX.P)Q = [Q/X]{P) 

»/-reduction 

The second rule corresponds to ^-reduction. The program — which represents a function ab- 
straction where the body is the application of a function F to the newly bound variable — can 
be reduced to F. 

Eta 
(funY.(FY)) = F 

7-reduction 

The third rule is a rule which reduces case expressions. We call this reduction 7-reduction. 
Assume a case program is given, which first parameter is of the form c; Ch..Qmi. Operationally 
speaking the program defined on the i-th branch of the case command has to be executed after 
an appropriate variable substitution. Note, that the number of parameters must be identical to 
the number of variable slots, provided by the pattern. The reduction rule is defined as follows: 
The matching substitution between pattern and CiQ±..Qmi has the form: Qi/Xi..QmjXmi. 

This substitution binds the variables in the program PW to the new values. 

( case Ci Qi..Qrni_ of \ 

d x[l\.x$ => P(D 

jamma 

I      r     Y^    Y^ ^  P(«) 

= [Qi/Xl..Qmi/Xmi]{P^) 
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A-reduction 

The fourth reduction rule is the assignment reduction. We call it A-reduction. The let construct 
takes a parameter program Pi, binds it to a variable X and replaces all free occurrences of X 
in P2 with Pi. The rule has the following form. 

Lambda 
(let Pi be X in P2) = [Pi/X](P2; 

e-reduction 

The fifth reduction rule is called e-reduction. It is only important in the case of impure programs. 
It states, that every immediate pair of projection and embedding can be removed: 

— Epsilon 
P = P 

p-reduction 

The sixth and last reduction rule treats recursion: it is called the p-reduction. All free occur- 
rences of the variable X are replaced by the recursive program itself. 

(rec X.P) = [rec X. P/X](P) 
Roh 

It would be beyond the scope of this thesis to go into a detailed examination about the 
character and theoretical properties of this set of reduction rules. For an arbitrary program, 
these reduction rules have a very non-deterministic flavor. We conjecture, that the reduction of 
a well-typed program stops after finite many applications. 

3.2.3    Design of an MLF Evaluation Function 

In the last subsection we defined a set of reduction rules, which can reduce subterms of a term 
at any time. In this subsection we define an evaluation judgment for MLF. The application of 
reduction rules is triggered by the form of the program. We have seen that some of the reduction 
rules make use of substitutions. The substitutions are constructed from the form of the program 
— as for example for application. There are two common strategies how to apply reduction 
rules. The first evaluation strategy is called eager evaluation. The programs which are used 
for the definition of substitutions are evaluated before the substitution is formed. The second 
evaluation strategy is called lazy evaluation. Programs are not evaluated, but taken directly to 
form the substitution. In this thesis we follow only the ideas of the first strategy: The judgment 
we define for the eager evaluation strategy of MLF program has the form: 

P ^MLF P 

In the remainder of this section, we define the inference rules for this judgement: Reduction rules 
are applied in an outermost left to right fashion. We give the rules by distinguishing between 
the forms of the program P in the judgment P ^/-MLF Q- 

The first rule says that the program, which is the proof term for 1 evaluates to itself. 
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evunit 
unit ^MLF unit 

Another program which evaluates to itself is the A-term — or in our notation the term 
(funLP): 

fun X.P ^MLF fun X.P 
evfun 

These are the only base rules for the evaluation judgement. We will now address the other 
programs: The recursion program corresponds to the fixed point construct of a functional pro- 
gramming language. The definition of the evaluation rule is defined similarly to the p-reduction: 

[rec X.P/X]{P)^MLFV 
 evrec 

rec X.P ^MLF V 

The rules for the evaluation of pair, inl, inr and inx are all very similar, the definition is 
straightforward. 

-Pi ^-MLF Vi    P2 ^MLF V2 evpair 
(pair Pi P2) M-MLF (pair Vi V2) 

P ^MLF V 

(inl P) ^MLF (inl V) 

P ^MLF V 

(inr P) ^MLF (inr V) 

•evinl 

evmr 

-evinx 
Pi ^-MLF VI    P2 ^MLF V2 

(inx Pt P2) ^MLF (inx Vi V2) 

The next evaluation judgment defines the evaluation of a case program. The idea is to 
evaluate the first parameter. The result is supposed to be of the form: c,- Qij..Qmi. If the case 
construct includes the definition of a pattern which matches this program, the evaluation is 
possible: In this case, the i-th program pM is selected, the variables are instantiated with the 
programs Qi..Qmi, and then evaluated. The result value is the value of the evaluation of the 
case construct. 

P <-+MLF ci Qi..Qmi    [Qi/X1..Qmi/Xmi](P®) ^MLF V 
evcase 

/ case P of \ 

^MLFV 
Cl ij

1»..!*1) =* PW 

Cn x\n\.x^i =» p("); 
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To evaluate a let construct, we first evaluate the program Pi to obtain a value V. We then 
replace X in P2 by V. The evaluation of [V'/X](P2) yields the value V. This rule is clearly 
eager because the program Pi is evaluated before it is substituted into P2. 

PI^MLFV    [V'/X](P2)^MLFV 
 evleteager 

(let Pi be X in P2) <-+MLF V 

We also can imagine a lazy version of this rule: 

[Pi/X](P2)^MLFV 
evletlazy 

(let Pi be X in P2) ^MLF V 

The application rule is similar to the let rule. Both rules are closely related. It is even 
possible to replace the let program by an application and a fun-abstraction. We can define let 
as syntactic sugar from fun: 

(let Pi be X in P2) = ((fun X.P2) Pi) 

Since we want to keep proof terms readable, we decided to use the let construct instead t>f the 
application. The rule for eager application is defined as 

Pi <->MLF (fun X.P')    P2^MLFV    [V'/X](P')^MLFV 

(app Pi P2) ^MLF V 
evappeager 

Again it is possible to write down the lazy form: P2 is not evaluated, but directly substituted 
into P'\ 

Pi ^MLF (fun X.P')        [P2/X] (P) ^MLF V 
 evapplazy 

(app Pi P2) ^MLF V 

To complete the inference rule set for the evaluation judgment we define the evaluation of 
embedded LF objects. If we can assume all programs to be pure, it has the following form: 

— — evobj 
M ^MLF M 

M cannot contain any free variables, all evaluation rules preserve the property, that the 
programs do not contain any free variables. The only variables which can occur free in M are 
free meta variables. It follows immediately, that M does not contain any programs at all. 

For the impure case, things are getting much more difficult: The object structure of M has 
to be examined because an unevaluated program could be a subformula of M. The rule has 
then the following form: 

Mi = M2 
 evobj 
Mi ^MLF M2 

But then the rule (3.3) has to be exchanged by the new rule: 

This is not really satisfactory. The aim of MLF is to reason about pure objects only. 
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Definition 3.26 (Canonical form) Let P be a well-formed program which does not contain 
any free meta variables. If P ^MLF P', P' is called the canonical form of P. 

3.3    MLF inference system 

In this section we introduce the typing judgments and typing rules for MLF. In the last section 
we defined several languages for formulae, programs, kinds, types and objects. In this section 
we combine these notions, and describe the different typing relations. Therefore we define a 
collection of new judgments. The semantics of these judgments is defined in the following 
subsections. Since the typing rules for each judgments will depend on other judgments, we 
first define the judgments and describe their meaning informally before we go into details. The 
judgments have the following forms: 

1. hE r ctx 
2. r hE G goal r hE D data 
3. r hs p e G 
4. r hs A objctx 
5. r; A hE K kind 
6. T; A hs AP : K T;AI-EAG:tf r-A\-xAD:K 
7. T; A hE M : AP T; A hE M : AG r-A\-xM:AD 

The first judgement allows us to distinguish between well-formed and ill-formed contexts. 
The inference of this judgment will reflect that in a context T,X £ D, D may only depend on 
free variables in T. If this holds for every declaration in a context, then we call the context 
well-formed otherwise ill-formed. 

The second set of judgements r hE G goal and r hE D data express the property if a formula 
G is a well-formed goal formula and the formula D is a well-formed data formula. Since formulae 
can depend on free variables, the judgments must contain the context T. 

The third judgement is the center piece of the MLF rule system. It defines the typing relation 
between programs and formulae. This judgement can be seen from two different angles: from a 
logical angle and from a computer science angle. 

From a logical point of view, the context represents the set of assumptions, from which the 
formulae G has to be proven. The proof term P represents the derivation. 

From a computer science point of view, the judgment r hE P £ G represents a state in a 
computation. The context V accounts for all objects available at this certain stage. All objects 
are disguised in form of programs. P stands for the program still to be executed. G is the "type" 
of the result. Let X 6 A be a declaration in the context, A is an LF type. One can expect that 
X is bound to a value M at this stage of the computation. In the last section of this chapter we 
will introduce an evaluation judgment which actually calculates the result program from given 
programs. 

The fourth judgment T hE A objctx defines if an LF context A is well-formed with respect 
to a meta context T. The meta context has to be part of the judgment, since the declarations 
in A may depend on meta variables. 
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The next three sets of judgments redefine the judgments of LF type theory. Since MLF is 
built on top of the Horn fragment of there are three different types Ap, AQ and AD. For each 
type there must be a typing judgment which defines the kind of the type. There must be also a 
typing judgment to define how the objects of this type may look like. 

This section is organized as follows: We first define the rules for well-formed contexts. We 
then show the revised versions of the judgments for LF type theory, that is what are well- 
formed objects, what are well-formed types and what are well-formed kinds. Finally we define 
the inference rules for MLF: What are well-formed data formulae, what are well-formed goal 
formulae, and what are well-formed programs. 

3.3.1    Typing rules for meta context 

In this subsection we define the inference rules for the judgment hE T ctx: Is T a well-formed 
meta context? A meta context is well-formed if it is either empty or all declarations can be 
shown to be well-formed. A declaration is well-formed, if D is a well-formed data formula: 

hE T ctx    Y\~Y,D data 
ctxemp    ctxcons 

hE • ctx hEr,lGfl ctx 

3.3.2    Typing rules for object contexts 

In this subsection we give the rules to derive the judgment T hE A objctx for well-typed object 
contexts. This judgement is essentially the same judgment as it is described in the original 
paper [HHP93]. We have to refine it because objects can depend meta variables. The idea is to 
formulate the judgement in a way, that A is a well-formed context with respect to meta variables 
in T. As in the meta context definition we have to check, whether every entry x : AD in A is 
defined with respect to a given T. 

objctxemp 

objctxcons 

T hE • objctx 

r hs A objctx    T; A r-s AD : type 

r h-£ A, x : AD objctx 

3.3.3    Typing rules for kinds 

In this subsection we give the rules to derive the judgment T;A\-^K kind for kinds. We take 
the judgment from LF type theory and extend it by the context T. The rules are as follows: 

kindtype 
T; A l-£ type kind 

T; A hE AQ : type    T;A,x : AG hs K kind 

V; A hs Ux : AG. K kind 

Note, that every AQ is also an AD- 

kindpi 
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3.3.4    Typing rules for types 

In this subsection we give the rules to derive the judgment for types. As we have seen earlier, we 
distinguish between atomic types, goal types and data types. We introduced three judgments: 

r; A hE AP : K 

T;A\-xAG:K 

T;A\-xAD:K 

As we know from LF type theory, types are typed by kinds. We already know how to judge 
about kinds. Note that there is no direct connection between MLF and LF in these rules. Types 
do not depend neither on programs nor on formulae. Indirectly, they may depend on programs, 
since objects depend on programs and types may depend on objects. We will be concerned with 
this question in the next subsection. We take the judgment from LF type theory and extend it 
by the context V. The rules for all three judgments have the form: 

S(a) = K 
■ typeatomconst 

T;A\-Ea:K 

r;AhE AP:Ilx:AG.K    T;A\-^M:AG 

T;A\-z(APM):{M/x}kind(K) 

T;A\-zAp:K    K = K'    T; A hE K' : kind 

typeatomapp 

T; A hE AP : K< 
typeatomequiv 

T; A hE AG : type    T;A,x: AG hE AD : type 
 typedatapi 

T; A hs Ux : AG. AD : type 

3.3.5    Typing rules for objects 

In this subsection we give the rules to derive the typing judgments for objects: 

r; A he M : AP 

r; A hE M : AG 

V; A hE M : AD 

In LF type theory there is judgment A hE M : A. Since there are atomic, goal and data types, 
a set of rules has to be defined for each judgment. The judgments are extended by the meta 
context T. 

A{x) = AD . 
objdatasigma 

T; A hE x : AD 

S(c) = AD 

T;A^c:AD 

objdataconst 
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r; A FE My : Ux : AG. AD    r;AhsM2:AG 
 objdataapp 

r;AhE(M1M2):AD 

r; A, x : AG hE M : AD 
objdatapi 

V; A hs Aa; : AG. M : Ux : AG. AD 

T;AI-sM:Ag    AD = AD'    T; A hs AD' : type 

T; A hs M : AD' 
objdataequiv 

Earlier, we introduced two different possibilities of how to form objects from programs. In 
the general case — an object is formed by projecting a program onto the object level, in the 
restricted case, the form of the programs is restricted to variables. We called objects of the 
latter form pure objects. 

The typing rule for the impure case has the following form: If P is a proof term of a formula 
G and G is of the form A then P_ is of type A: 

r KE P € A~Q~ 
•objgoalprgl (3.4) 

r;AhsP:iG 

If we read the rule from bottom to top, we read it as: If P_ should be shown of type A in 
context A — the meta variables are all defined in a context T, then P has to be shown to be a 
program of formula A, solely from the context T. We assume that every program is closed with 
respect to LF variables. Note, that with this rule it is possible to generate cyclic dependencies 
between LF level and meta level. These dependencies must be removed since the goal is to 
obtain a clean distinction between LF and meta level. A simplification arises from assuming 
that the objects in question are actually pure. That is, only meta variables can be projected 
onto the LF level and not arbitrary programs any more. We obtain a simplified typing rule: 

T(X) = A~Q~ 
objgoalprgP (3.5) 

T; A hE X : AG 

This formulation of the rule removes the mutual dependencies between LF and meta level. 

3.3.6    Typing rules for formulae 

The judgments 
r hs G goal 
r hs D data 

define the well-formedness of goal formulae and data formula. It is easy to see, that core formulae 
are well-formed if and only it is well-formed as a goal formula if and only if it is well-formed as a 
data formula. Goal formula and data formulae may depend on free meta variables. Hence, the 
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judgments depend on the context V. The rules for goal formulae are defined in a straightforward 
manner: 

T; • hE AD : type    r, X € ÄB \~z G goal 
 goalforall 

T hs VX : AD.G goal 

T; • hE AG : type    r, X g Äg" hE G goal 

r hE 3X : AG.G goal 

ThsGigoal    rhEG2goal 

goalexists 

r hE Gi A G2 goal 

rhEGlgoal    rhEG2goal 

r l-E Gi V G2 goal 

r l-E D data    T hE G goal 

goaland 

goalor 

r hE D -> G goal 

 goaltrue 
T hE 1 goal 

r; • hE X kind    T; • hE AG : K 

goalimp 

goaltype 
T r-s AG goal 

The rules for data formulae are similarly defined as: 

T; • hE AG : type    r, X 6 A~G HE D data 

T hE VX : AG.D data 

T; • hE AD : type    r,IeÄ^hsD data 

■dataforall 

rhE3X : AD.Ddata 

T hE Di data    T hE D2 data 

dataexists 

T hE Di A D2 data 

T hE Di data    T hE D2 data 

r hE £>! V L>2 data 

dataand 

dataor 
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r hs G goal    r hE D data 
 dataimp 

r l-s G -4 D data 

datatrue 
T hE 1 data 

r; • hs K kind    T; • hE AD : K 

T hs AD data 
datatype 

3.3.7    Typing rules of MLF 

The central notion for meta level reasoning is the sequent. A sequent represents information 
about a context, a goal formula which is to be proven, and a proof term. The context represents 
also variable dependencies. A sequent is of the form T hE P G G. 

The typing rules of programs in MLF are designed in sequent calculus style. We distinguish 
between left and right rules, that is rules which operate on the context and rules, which operate 
on the goal formula. The calculus represents essentially intuitionistic first order logic. Two 
non-standard rules are added to the system. One rule is the recursion rule: it provides — in 
the case of an induction proof the appropriate induction hypothesis. The well-foundedness of 
the recursion is not incorporated in the system, but encoded in form of a side condition. This 
approach has two advantages. First, we get a cleaner inference rule system and second a more 
powerful proof system, because the well-foundedness proofs have to be done outside this system. 
The second advantage is, that different methods can now be used to prove well-foundedness as 
a property of the proof term. 

The second rule added to the system is a case distinction rule. This rule allows to differentiate 
over different forms of an LF object. Note, that since the signature is finite, only finite many 
cases have to be considered. If an LF object M of LF type A is given, all possible forms of 
M as an element of A are examined. A variable refinement substitution is derived by pattern 
matching. This substitution accounts for the dependencies of newly introduced variables to old 
ones. 

The judgment r hE P € G reads as follows. V represents the context — that is it defines all 
meta variables which may occur free in P and in G. G is the goal formula to be proven. Once a 
proof is found, a proof term P is available. This proof term can be read as a functional program 
with patterns. We will first present the axiom cases, the right rules, the recursion rule, then the 
left rules, the case distinction rule, and finally the cut rule. 

Axioms 

The first axiom rule is purely logical. It simply says, that if we have a proof of goal C in the 
context, then we have a proof of goal C. 

h-sT^XeC^ctx 
TuXeC^^xeC1 
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The second axiom rule is similarly simple. MLF is a meta logical system on top of LF. We 
assume to work in a fixed signature S. The embedding functions we defined earlier allow LF 
objects to serve as proof terms — proof terms for embedded LF types as MLF formulae. The 
constant rule allows MLF to access constants defined in the signature: 

hsTctx 
 == const     for c : AG defined in S 
r hE c G AG 

The third axiom rule can be seen as a logical rule, too. In some theorem provers, the formula 
"true" is represented as a formula like A V->A. This representation avoids the definition of a new 
constant, and the corresponding inference rules. We do not follow this idea. "True" is defined 
as a formula 1 in section 3.1. Therefore we have to define an inference rule and a proof term for 
1. In every arbitrary context T, unit is a proof for the formula 1. 

hE T ctx 
Rl 

r hs (unit) e i 

We will now describe the set of right rules which are very similar to the right of the sequent 
calculus for intuitionistic first order logic. 

Right Rules: 

Right rules operate on the goal formula — the only formula on the right hand side of a sequent. 
A right rule can be applied in a bottom to top manner to resolve the structure of the goal, and 
generate a set of subgoals to be proven. Right rules are always applicable if the goal formulae 
is of composite form, that is it is not atomic. We define rules for five intuitionistic connectives: 
conjunction, disjunction, implication, universal quantification, and existential quantification. 

The rule for conjunction on the right is straightforward. A goal G\ A G2 can be proven if 
G\ and G2 can be proven independently. The resulting proof term is a pair of both proofs. We 
introduce pair as a constructor for pairs in programs. 

r hE px e Gi   r hE p2eG2 
 RA 
rhE(pairF1P2)eG1AG,2 

The rule for disjunction is defined as in the intuitionistic case. We can prove the disjunction 
of G\ and G2 if and only if at least G\ or G2 are provable. The proof term is constructed by 
inr or inl and the proof term of the premiss as argument. The proof term has to store the 
information if the left or the right side of the goal has been proven. That's why we have to 
distinguish two constructors. 

rhEPeGx       n rhEPGG2 
RVi    Rv2 

r hE (inl P) € Gi V G2 T hE (inr P) € Gi V G2 

The definition of the rule for implication is also very similar to the intuitionistic case. As 
described in [GLT88] a very nice way to represent proofs in the intuitionistic calculus is to make 
use of the Curry Howard isomorphism, and to present the proofs as A-terms. The proof term 
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of an implication on the right is a A-term. This term essentially reads as: From a proof of D, 
a proof for G can be constructed. We restrict the left side of implication to data formulae and 
the right side to goal formulae because we are working in the Horn fragment of LF. Since we 
want to make a clear distinction between A-terms as they are used in LF type theory on the 
object level, we use a different notion to represent A-terms: (funX.P) corresponds to a A-term 
on program level. 

The rule for implication on the right reads as follows: If D —> G is to be proven, it is enough 
to show that under the additional assumption we have a proof for D, we can find a proof for G: 

T,xeD\-xPeG 

r hE (funX.P) eD^G 

To prove a universal quantified goal formula \/X : AJQ.G in a context T, G has to be proven 
from an extended set of assumptions: T must be extended by the assumption that we have 
a proof term of the embedded data type Ap. Note, that we have to avoid to name the new 
assumption X, since X could already be defined in the context T. Instead, we name it Y, a new 
variable name — and then replace all occurrences of X in G by Y. 

r, Y e IE hE [Y/X]P e [Y/x] (G) 
 ; ; RV rhE (fun X.P) eVX: AD.G 

The existential rule on the right is an extended version of the one in the intuitionistic calculus. 
In the intuitionistic calculus, if a formula Bx.G is to be proven, it is enough to find a witness 
object a s.t. [a/x](G) is provable. In the MLF setting, this idea remains the same: In addition, 
we have to make sure, that the witness term is a term of the right type. 

The rule reads as follows: If 3X : AQ-G is to be proven from a context T, we have to make 
sure that there is a witness term P' which is of type AQ and [P'/X](G) can be proven from 
T. The proof term we construct must now take both proof terms into account. We introduce 
a new program constructor (inx P' P) which represents the witness proof term and the proof 
term itself. 

rhsP'GÄ^  r hE p e [P'/X](G) 
 R3 

ThE (inx P' P)  e3X :AG.G 

So far we took only rules of the intuitionistic calculus and modified and extended them 
slightly. As we mentioned earlier, induction will play a major role in the proof system for MLF. 
The standard technique of tackling induction is to generate a set of induction principles for an 
inductively defined type [Hue88, PM93, C+95]. The problem with induction principles is, that 
they are very rigid in their form. Proofs may not be easily found. We suspect that the inflexible 
character of induction principles my paralyze the proof process. We propose, to abandon the 
idea of proving well-foundedness within the system and to provide a rule which introduces the 
induction hypothesis in a more general way. This idea is realized in the recursion rule: 
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Recursion: The idea of the recursion rule is, that if a formula G is to be proven, we can 
simply assume it to use it as the induction hypothesis -^- which happen to have the same form 
as G. But now G must be transformed into a data formula. This is only possible, if we restrict 
recursion to core formulae C. The proof term we construct is a recursion operator. It captures 
the name of the induction variable — in our rule X, and the proof term. The recursive character 
of this program was described in section 3.2. The preliminary version of the rule is defined as 
follows: 

T,xeC\-EPeC 
rec 

T hE (rec X.P) 6 C 

The definition rule is not complete yet. It has to be refined by a side condition. The 
following example shows that this formulation accepts derivation which should not count as 
valid derivations: 

Example 3.27 Let G be a goal which shall be proven from a context T.   Omitting the side 
condition at the rec-rule we can easily establish the following derivation: 

id 
T,XeG\-sX eG 

r hE rec X.X G G 

We cannot accept this derivation as a valid derivation. The intuition behind this derivation 
is: Assume G and prove G from this new assumption. X is the induction hypothesis. The 
problem lies within the non-totality of the proof term. A proof term witnesses the provability of 
a formula by itself, or it describes a concept of how to construct a witness program. Obviously 
these programs have to be total, that is a witness program has to be the result of an evaluation 
of the program. We make the notion of evaluation later more precise. The program rec X.X 
is not total: The application of ((rec X.X) M) yields after one reduction step ((rec X.X) M). 
The program will never terminate. 

To exclude non-total programs as proof terms, we introduce a side condition: P \. X. The 
new judgement of the form P \. X holds if and only if the parameters to which X is applied 
are getting smaller according to a well-founded ordering. We will not go into the details how 
P I X may be defined, we only set up the "interface" to the proof. The judgment P \ X is this 
interface. The recursion rule has the form: 

r,xeChEPec 
 rec  with PiX 
T hs (rec X.P) ec 

Left Rules: 

After introducing all right rules for MLF, we concentrate now on the left rules. The left rules 
are operating on the context. A left rule is applicable, if an assumption has a certain form. We 
will structure the presentation of the rules in two parts. In the first part we will give the rules 
which are taken almost directly from the proof system for intuitionistic logic. In the second 
part, we will present the rules, which bridge the gap between MLF and LF. 
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The definition of left rules will make use of the case construction for programs. The case 
distinction program is defined as 

/ case P of \ 

\ i Q(«) =>. p(") y 

The QW's stand for patterns. The operational meaning of this program reads as follows: Assume 
that P is a program. P should be matched with Q^k\ moreover there should be exactly one k 
s.t. Q(k> matches with P. The result of this matching process is a meta substitution: 0. Under 
the eager evaluation ordering ^MLF the case construct reduces to [&\(P^). 

Before we define the left rules for MLF, the notion of patterns must be closer examined: Let 
the set {QW.^M} define the set of patterns of the case distinction. This set of patterns should 
be sound on complete with respect to the different forms P can take. Soundness means, that 
there is at most one pattern Q(k> which matches with the canonical form of P. Completeness 
means, that there is at least one pattern QW which matches with the canonical form of P. We 
make both notions more formal: A complete set of patterns is defined as: 

Definition 3.28 (Complete set of patterns) Let S be a set of patterns: S is called complete 
with respect to a goal formula G iff 

r hs P G G implies that a Q S S matches with the canonical form of P 

and a sound set of patterns is defined as follows: 

Definition 3.29 (Sound set of patterns) Let S be a set of patterns: S is called sound with 
respect to a goal formula G iff 

Q matches with P and Q' matches with P implies that Q = Q' 

As in the right case, there are some standard connectives, which have to be defined. These 
connectives are conjunction, disjunction, implication, universal and existential quantification. As 
before, we will examine rule by rule and comment on the changes and extensions in comparison 
with the proof system for intuitionistic logic. 

Note, that we did not define any structural rules for this calculus. In section 4.2 we will see 
that that weakening and contraction are admissible rules in this system. It cannot be expected 
that a general exchange rule exists. Exchanging two assumption in a context may violate the 
dependencies of LF types from each other. 

Since we do not allow any structural rules, we have to duplicate occurrences of the formula 
in question, from the conclusion to the premisses. We know that in a non-resource oriented 
logic, assumptions cannot disappear. 

The first rule we discuss is the rule for conjunction. The rule is applicable in a bottom to 
top manner if a data formula Di A D<i can be found in the context. We then extend the context 
by two new assumptions, namely the assumption X\ as a proof of D\ and X2 as a proof of D2. 
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If we then can prove G, a proof term P will be provided. P may contain the two new variables 
Xi and X2. To construct a new proof term for the rule, we have to bring X, Xi,X2 and P 
together: The proof term is a case construct, ranging over X. We already know that X is the 
proof of a conjunction and it is easy to show, that {(pair X\ X2)} is a sound and complete set 
of patterns for DX/\D2. So, the final proof term has the form: (case X of (pair X\ X2) =^ P). 

ri.x e fliAD2,r2,ii e DUX2 e D2 hE p e G 
■LA 

rx, X 6 D1 A D2, T2 hE (case X of (pair Xi X2) ^ P) e G 

Using the same idea, we define now the rule for disjunction. The rule reads as follows: If 
we have the assumption D\ V D2, and we want to prove a goal G, then we can use D\ to prove 
G iff we can prove G also from D2. Recall that we defined two constructors for proof terms of 
a disjunction: inl, inr. A sound and complete set of patterns is {(inl X\), (inr X2)}. The 
resulting proof term is a case distinction between these both constructors. The rule is formulated 
as follows: 

Vi,xe £>i vD2,T2,XX e £>i hE Pi € G   rux e £>i vD2,r2,x2 eD2^p2eG 

\ I (mr A2) =*> P2 J 

The next rule is the rule for implication left. Here we assume, that we have an assumption 
of the form G\ —»• D. If we can prove that G\ is true, i.e. that there is a proof term Pi of G\, we 
can use the function represented by X to obtain a proof term of G2. If the original goal formula 
G2 can now be proven from the an extended set of assumptions — extended by new assumption 
that there is a proof Y of D — then we are all set. Let P2 be the proof term for the formula 
G2. The proof term which is defined by the rule has to reflect the relationship between the Y 
and Pi. The intended meaning of the new program is: Instantiate the meta variable Y with the 
application of X to P. We have to combine two different programs to build up this proof term. 
First the program for instantiation is as follows: let P3 be Y in P2. The program P3 is derived 
by applying X to Pi: (app X Pi). Here is the version of the rule implication on the left. 

vuxe Gx -»D,V2 H Pi e Gi   rux e d -»D,r2,Y e D\-Ep2e G2 

ri,XeGi->£>,r2hs(let(appXPi)beY in P2) € G2 ~* 

The next rule is universal quantification on the left. This rule is applicable if there is a 
universally quantified formula VY : AQ-D in the context. Let Pi be a proof term of AQ. This 
proof term can be interpreted as an LF object of type AQ- Since we can use the function X 
to obtain a proof term of type [Pi/Y](D), the set of assumptions for can be extended by the 
assumption Z is a proof term of formula [Pi/Y](D). If G is now provable, we obtain a proof 
term P2. The proof of the rule is constructed in the same way as in rule L —K application and 
instantiation have to be combined. The proof term has the form: (let (app X P\) be Z in P2). 

TUX e VY : AG.D,T2 hE Pi e Ä£   Li,X e VY : AG.D,T2,Ze [Pi/Y](L>) hE P2 G G 
 LV 

fi, X e VY : AG.D, T2 hE (let (app X Pi) be Z in P2) e G 
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The existential rule on the left corresponds to the conjunction rule on the left. It is applicable 
if 3Y : AG.D is an assumption in the context. This implies, that the witness object is available 
and also a proof term of [Xi/Y](D), where Xi represents the witness object. This proof term 
is represented by X2. Let P be a proof term of the goal formula G proven from this extend set 
of assumptions. It can be shown that {(inx X\ X2)} is a sound and complete set of patterns 
for 3Y : AG.D. Therefore the proof term has the form : (case X of (inx X\ X2) =>- P). 

TuXe 3Y : AD.D^X^ eA~E,X2e [Xi/y](Z>) hsPeG 

TUX e3Y : AD.D,T2 hE (case X of (inx ^ X2) => P) G G 

This concludes the presentation of the set of rules which are defined a long the lines of 
[Gal93]. Next, we define a set of rules, which treats embedded II-abstraction as data formulae. 

LF related rules Assume we have an assumption of a functional LF type in the actual 
context. This assumption is of the form: Ila; : AG.AD- MLF is allowed to look inside the 
embedding function. Assume we can find a proof term of the formula AG. This proof term 
might be of arbitrary form P'. Since we know that P' can be projected to the LF level, we can 
define an additional assumption ((Ila; : AG.AD) EL) with which G is to be proven. It is obvious 
that the embedded type is not pure. To preserve purity, we restrict the form of the proof term 
to be either Mora metavariable X. We obtain the following rules: 

TuXeILx: AG.AD, T2 hs M G AG 

TuXe Ux : AG.AD,T2,Y G {M/x}type{AD) hs P e G 
 ====== Ln 

T^XeUx: AG.AD,T2 hE [XM/Y](P) G G 

and 

TuXeUx: AG.AD, T2\-EZe AG 

TuXe Ux : AG.AD,T2,Y G {Z/x}type{AD) hE P e G 
 ===== __ Lnv 

TuXe Ux : AG.AD,T2 FE [XZ/Y](P) e G 

We will discuss the notion of purity in MLF in more detail in section 4.1. It seems as if we 
restricted the application possibilities for this rule quite a lot. But it turns out that in all the 
examples we were experimenting with, no negative indication occured that restriction to M and 
X is to strong. 

The second LF related rules are as follows: Both previous rules assumed an embedded II-type 
to be declared in the context. This is not the only place where II-types are defined: constants 
of II-types are defined in the signature. The motivation for the next rule is to connect MLF 
to the signature. The rules are very similar to LII and LIIV — the only difference is, that 
Ila; : AG.AD is part of the signature and not of the context. Note, that we have to apply the 
same argument to motivate the restriction of considering only programs M and meta variables 
Z and not arbitrary programs of the form P' as proof terms of AG. We define the following two 
rules: 
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r hE M G AG    T,Y e {M/x}type{AD) hE P G G 
 LIIE  where c : ILr : AG.AD G E 

rhs[cM/y](p)GG 

and 

rhEzeAG   r,ye{i/x}type(AD)h2PeG 
 = LITEV   where c :Tlx : AG.AD eT, 

Thx[cZ/Y](P)eG 

To complete the inference rule system of MLF we have to define two more rules. The case 
distinction rule is still missing and also the cut rule, which allows application, and the reuse of 
already proven lemmata. 

Case Distinction 

Next, we introduce the case distinction rule. For inductive proofs over inductively defined 
types case distinction is a common proof strategy. Several systems which can perform meta 
level reasoning, like Coq [C+95], PVS [ORS92, RSC95] and others, possess an inductive proof 
component. They are based on the generation of induction principles. MLF does not follow this 
idea but provides recursion and case distinction as the major components for inductive proofs. 
We outline the motivation behind the definition of the case distinction rule. 

Assume we want to derive a judgment of the form r HE Q G G where X is a free variable 
in G, and possibly also in Y. X must be defined in T, otherwise V is not well-formed. Suppose 
that X is a variable of the goal formula AG. The idea is, that if we find a proof term P of AQ 

we would like to restrict the proof by considering the different forms the program P can take. 
The form of P leads to a set of subproofs, where T and G are refined. 

The form of the program P is arbitrary. Using an appropriate reduction relation, P can be 
rewritten to M. M is an LF object of type AG in context T. The different forms M can take is 
defined by the signature. Since E is fixed, it is possible to derive a sound and complete set of 
patterns for AG. But how can this set be determined? The question is challenging because AG 

is a dependent type. 
A sound and complete set of patterns for AG can be found by selecting a certain subset of 

the signature E — call it E' for now. E' should contain only object constant declarations and 
not type constant declarations: For all object constant declarations c : AD in E' the following 
must hold: AG must be refinable into a type AD — but AD might be not atomic. In general it 
has the form 

AD = IIzi : AGl..Uxn : AGn. AP 

If we assume that there are proof terms X\ G AGl up to Xn G AGn, we can transform AD into 
an atomic type: 

AP' = {X1/x1..XJJxn}{Ap) 

If this type Ap is a refinement of the original type AG, then (c Xj..Xn) is a pattern of an object 
of the refined type AG. 
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We will now make this notion of refinement more precise. E' was defined as a subset of the 
signature. Every declaration in S' contributes to a refinement of the type AQ- The refinement 
is essentially a substitution which unifies AQ and Ap . These observations lead to the definition 
of the refinement of a type: 

Definition 3.30 (Refinement of types) (A, 0) is a refinement of X e AQ in context T using 
c : Uxi : Aai--Tlxn : Aan- Ap if and only if the following conditions hold: 

1. {Xi.,Xn} are fresh meta variables in T 

2. 0' = umfyiiXjJxL.Xjx^iAp) « AG) 

s. e = e,\dom(r)u(cx1..Xn/x) 

4- A is inductively defined as A„: 

Ao   = 
Aj+i   =   An,X{+i e {X±/x1..Xifxi}type(AGi+i) 

Note, that the unification problem is a real unification problem and not only a matching 
problem. This becomes immediately evident, when looking at the following example: Assume 
that we can derive a program P from a context T of type F e eval Y_(sz). Obviously, the 
meta-variable Y must be declared in the context T. If we perform the unification algorithm to 
match this formula with eval (s X±) (s Xj) we obtain the following substitution 0: 

0 = (sXi)/F,z/X2 

Strictly speaking, the substitution consists of two parts, a refinement part and a so called veri- 
fication part: The refinement substitution assigns terms made of new variables to old variables. 
In this example, the refinement substitution has the form 0r = [(s Xi)/Y]. The other part of 
the substitution we is called verification substitution. In this case the newly introduced vari- 
ables are assigned to subterms. In the example above, the verification substitution has the 
form: 0„ = [z/^]- Obviously, z is not further refinable. The verification part of a substitution 
therefore does not contribute to the form of the refinement, but it simply carries the information 
that it is possible to make the given term and the term taken from the signature equal. The 
verification part of the substitution is not of our concern, it is handled by the rule as we will see, 
when we actually define the case rule. The part of the substitution we need is the refinement 
substitution. To obtain the refinement substitution we have to restrict the substitution 0 in the 
definition of Ind^^iX, B) to the domain of T. 

Based on this definition, we define a set of all possible refinements: Indj^rpf, AQ): X is 
the variable, induction is made over, AQ its formula. To obtain now the set of all possible 
constructors, we have to select all those declaration c : Ap, which may refine AG- Indsj^X, AQ) 

is a set of pairs (A, 0): 

Definition 3.31 (Inductive type) Let T be context, S be a signature, X a variable, and AQ 

be an atomic LF type. The inductive type of X, AQ with respect to T and S is defined as 

Ind<z,r(X,AG) = 

{(A, 0)|(A, 0) is a refinement of X £ AQ in context V using c : A in £} 
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In the definition of the case rule we distinguish between all different refinements in 
Inds,r(^, AQ). The case rule has therefore as many premisses as Ind^!r(X,Ao) has elements. 

There are many different ways of how to define the case rule. For our system, we want the 
case rule to have the following property: The inductive argument is assumed to be carried out 
for a more general atomic type. When specializing the atomic type by a substitution rj, the 
same proofs of the premisses should be still valid, rj incorporates the verification part of the 
substitution 0„. Here is the rule: 

for all i < n 
hE[p/x](r)ctx  rhEFGl^   A« [0«](^,)^-Ep(^')e[e«](G',) 

Cly(i)   y(i) 
cl L 1      •••■»mi 

/ case P of 

[P/X}(T) hs 

\ I   cnYl  

where following side conditions hold: 

1. Inds,r(X,AG') = {(A(1),e(1))..(A(n),0W)} 

case 

r{n)     v(n) 
■•■•* m*, 

foKpW) 

M(p(")) J 

e [P/x](G) 

2. There is a r] s.t. [v](AG') = AG, [rj\(Y') = V and [V](G'} = G 

Lemma 3.32 A^ and Q^ enjoys the following properties: 

Free(A«)    C    rf DJ?.} 

Var(A^)   =   {D®t,..tD$J 

(3.6) 

(3.7) 

Fs A(8') ctx 

0W is strictly pure 

(3.8) 

(3.9) 

Proof: For all (AW,GW) e Ind^>r(X, AG), the AD's in the definition (AW,GW) are declared 
in the signature and therefore closed. Consequently (3.6) and (3.7) hold. ©W is strict because 
of construction, an inductive argument yields hs AW ctx D 

The Cut rule 

The definition of the cut rule is similar to the one introduced in [Pfe94c]. The definition is not 
straightforward because of dependencies: the problem lies in the choice of how to relate the 
contexts of the premisses with the context of the conclusion. For every element X G D in the 
context T of a sequent, all introduced variables which are introduced in V before X can possibly 
occur in D. 

Looking at the cut rule from top to bottom, the cut rule can be interpreted as a way 
to perform application: Assume we have a proof of Y \~Y, (fun X.P) G MX : AD-G. This 
sequent can be read as: In a certain context T, a program was found which for every element 
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in AD yields a proof term of goal formula G. Suppose now that we have a different sequent, 
Ti,F G VX : AQ.G,T2 \~E P' £ G'. This sequent reads as follows: Under the assumption that 
we have a program of the data formula VX : AQ-G, we effectively can construct a proof term of 
some goal formula G'. The purpose of the cut rule is it to combine both proof terms to a proof 
term which witnesses the following judgment: From the remaining contexts of both participating 
sequents a proof term for the goal formula G' can be constructed. 

Because of the definition of goal and data formula, the universally quantified formulae might 
not be identical in both sequents. We therefore must restrict the cut formula to be a core formula 
— as in the case for recursion. We have seen that every core formula is a data formula and a 
goal formula. 

The cut rule is defined as follows: Two sequents can be cut with each other, if a core formula 
C occurs as a goal formula in one sequent and as a declaration X G C in the context of the 
other sequent. The declaration of the cut formula from the second sequent is removed and every 
free occurrence of X is replaced by the proof term of the first. Note, that the variable X cannot 
occur free in the context of the first sequent. The context of the first sequent, must be the initial 
context of the second. In the second context the meta variable X is already declared. Therefore 
the second sequent wouldn't be provable because the context is not well-formed. Here is the 
definition of the cut-rule: 

TihcPec  rlli6C,r2h£p'6G 
■cut 

rx,[p/x](r2) hE [P/X](P') G [P/x](G) 

This concludes the set of typing rules for r hg P G G. In the next chapter we will describe 
some theoretical properties of MLF. 
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Chapter 4 

Theoretical Aspects of MLF 

This chapter states some proof theoretic results about MLF. The system as we have defined has 
to be analyzed appropriately. In section 3.3 we defined the difference between objects and pure 
objects. We define now two differently strong notions of purity preservation. Then we show that 
MLF, as we defined it preserves purity according to the weaker notion. If we refine the system 
slightly, we can prove purity preservation in the stronger sense. 

The second result we show is a local reduction theorem. The local reduction theorem is 
the first step towards a cut elimination theorem. A general cut elimination theorem might 
be to general — if provable at all — and its proof would be beyond the scope of this thesis. 
Important results on the way to the local reduction theorem are the admissibility of weakening 
and contraction. 

This chapter is organized as follows: In the first section we give the purity results, and the 
second we give the local reduction proof. 

4.1    Purity results 

The notion of purity was defined to distinguish between objects which can depend on meta 
variables alone and objects which depend on composite programs. In this section we examine 
how purity and MLF go together. We show, that the system we defined in section 3.3 preserves 
purity in the way, that if all contexts, programs and formula participating in the premisses are 
pure, then the context, program and formula in the conclusion are pure. In a next step we 
will generalize the inference system of MLF to a stronger inference system, called the inference 
system for pure MLF. Now we can prove for the cut free fragment, that if T hs P e G is 
derivable, and T and G are pure, then the resulting program P must be pure, too. We call 
both results purity preservation results. In the first case, purity is preserved with respect to rule 
application, in the second, purity is preserved with respect to derivations. 

4.1.1    Basic Results 

In section 3.1 we also introduced the notion of pure and strictly pure substitutions. A pure 
substitution is a substitution in which are participating programs are pure. It is obvious, that 
the application of a pure substitution to a pure object may generate an impure object.  Since 

77 
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we want to say something about pure objects, it makes sense to strengthen the definition of 
pure substitution, to classify those, which generate pure programs. We call those substitutions 
strictly pure. It is also clear, that the participating programs must not longer be arbitrary 
programs but meta variables and embedded LF objects. 

For strictly pure substitutions, we have to show some basic results first: Strictly pure substi- 
tutions are doing what they are supposed to do, namely to preserve purity when being applied 
to something. Second, we show that the reverse also holds: If we have for a example an object 
which is the result of the application of an arbitrary substitution to it, and it is known that 
this result object is pure, then the original object must have been pure. Or, to put it the other 
way around: No impure object can turn pure by applying a substitution to it. A third result is 
similar to the second. If we have a pure object, which is the result of a substitution on an object 
M, and this result is pure, then the substitution must be strict, at least in the variables, which 
are used to produce the result object. These variables are the free variables occuring in M. Or 
again, we can put this result the other way around. If we substitute into an object programs 
which are neither meta variables, nor the embedded LF objects, then the result cannot be pure 

We will give these basic results first for objects and types, then for programs, formulae and 
finally for contexts. Since we have dependencies between objects and types, we have to prove 
some of the theorems by mutual induction. Here are the three theorems for pure objects and 
pure types. The proofs are done by induction, the detailed proofs are given in appendix B. 

Basic Results for Objects and Types 

By mutual induction we can show, that strict 0 applied to objects or types preserve purity. 

Lemma 4.1 Let M' be a pure object, A' a pure type, and 0 a strictly pure substitution, i.e. 
S{X) = Y or &(X) = M for all X e dom{&). Then O(M') is pure and O(A') is pure. 

On the other side, we can show that substitutions cannot purify objects 

Lemma 4.2 Let 0 be a substitution and [0](M) be a pure object. Then M is pure. 

and types 

Lemma 4.3 Let © be a substitution and [&\(A) be a pure type. Then A is pure. 

The third result has to be shown by mutual induction on objects and types. If 0 generates 
a pure result object/type, then 0 must be strict at least in the variables, which are used to 
produce the result object: 

Lemma 4.4 , Let 0 be substitution, M object and [&\0bject(M) pure and A be a type and 
[Q]type(A) pure. Then @\pree(M) must be strict and ©\Free(A) is strict. 
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Basic Results for Programs 

Strict 0 are preserving purity for programs: 

Lemma 4.5 Let P' be a pure program and 0 a strictly pure substitution. Then 0(P') is pure. 

And impure programs cannot be purified by substitution application: 

Lemma 4.6 Let 0 be a substitution and [&](P) be a pure. Then P is pure. 

The third result we had for objects and types, will surely not be available for programs: Assume 
0 be a substitution, and P = (pair D\ D2) a program, with Di,D2 variables. 0(P) = 
(pair 0(.Di) 0(;Z>2)) is pure program, even for arbitrary pure programs 0(£>i) and ©(D2). 

Basic Results for Formulae 

The results in the case of formulae are straightforward. All the lemmas are easy to prove by 
induction and we obtain the following three lemmata: 

Lemma 4.7 Let G' be a pure formula and 0 a strictly pure substitution. Then 0(C) is pure. 

Lemma 4.8 Let © be a substitution and [0](G) be a pure formula. Then G is pure. 

Lemma 4.9 Let 0 be substitution, G formula and [&\formula{G) pure. Then Q\FreetQ\ is strict. 

It is clear, that the proofs of these lemmata will refer to the basic results we obtained for types 
since types may be embedded into formulae. 

Basic Results for Contexts 

And finally, we prove two of the basic results for contexts. We will not need a strictness lemma 
for the purity analysis of MLF. 

Lemma 4.10 Let V' be a pure context and 0 a strictly pure substitution.  Then 0(r') is pure. 

Lemma 4.11 Let 0 be a substitution and [0](r) be a pure context. Then T is pure. 

So far, we presented some properties of objects, types, programs and formulas. Strictly pure 
substitutions preserve purity. We now want to tackle a bigger problem: What can be said about 
the type system for MLF rules? We consider two properties of MLF: 

1. Purity Preservation of typing rules: If every context, program and goal formula are pure 
in the premiss of a rule, then the context, program, and goal are pure in the conclusion. 

2. Purity preservation of derivations: If we have a proof of T (-£ P 6 G and we assume T, G 
pure, then P is pure. 



80 CHAPTER 4.   THEORETICAL ASPECTS OF MLF 

To enforce the second question, we have to change the set of rules. For example the rule LV 
has the premiss TX,X eVY : AG.D,T2 ha Pj_£ A~G~. Under the assumption that the context 
ri, X £ VY : AQ.D, r2 is pure and therefore AQ pure we could prove that the proof term P is 
pure. But, when looking at the second premiss: rx, X £ VY : AG.D, T2, Z £ [Pi/Y](D) hE P2 £ 
G we see, that the substitution P\/Y is not strictly pure. As mentioned earlier purity is not 
necessarily preserved by a non-strict substitution application. There is one remedy to this: The 
proof system has to be weakened by enforcing the substitution to be pure. We will show this in 
subsection 4.1.3. In the next subsection we address the first property. 

4.1.2    Purity Preservation of MLF Rules 

We will now prove the weaker formulation of the purity result for the MLF inference system. 
We remark, that we have to establish a side condition for the case rule for this argument to 
go through. The side condition is as follows: In the premiss of the rule, we have the formula 
AQ, which defines implicitly the different cases: AG is an instantiation of AG', which is used to 
define IndE|r(X, AQ). In the original formulation of the rule nothing is said about the purity 
of AQ. We have to assume that AQ is pure. The refined version of the rule is given below. 

for all i < n 
hs [p/x] (T) ctx  r hE p £ 13   Aw, [eW] (r') hE pw £ [eW] {G') 

/ case P of                                 \ 

[P/X)(T) hE 
ciY^LYÄUfoKPW) 

[\   cnY}n\..Yt]^[v](pW) ) 

case' 

£ [P/X]{G) 

where following side conditions hold: 

1. AG is pure 

2. IndE,r(X, AG') = {(A(1),G(1))..(A(n),e("))> 

3. There is a r? s.t. [rj\{AG') = AG, M(r') = T and [77](GO = G 

It seems to us, as if this additional restriction does not restrict the applicability for the rule 
at all. The framework is designed to reason about LF. Therefore we expect the type AG' to 
be an LF type about which induction should be made — a type which is a generalization of 
AG: there exists a 77, s.t AG = [rj\{AG). Assume, that AG' is impure. We can easily construct 
a more general LF type AG", which result from AG' by replacing all impure subprograms by 
fresh variables. This can be expressed as: there is a substitution rj', and a pure AQ", s.t. 
A-G = W\{A-G")- Hence AG" is a pure generalization of AQ: AG = [rjo T)']{AG")■ 

We conjecture that the case rule in the MLF framework can be replaced by case', without 
loss of generality. 

Theorem 4.12 Every typing rule in MLF without cut is purity preserving. That is, when the 
premisses are pure (all participating objects, types, programs, formulae, and contexts are pure) 
the conclusion will be pure, too. 
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Proof: Case: case': We can assume T to be pure, therefore [P/X] is strictly pure and by lemma 
4.10 we obtain [P/X](T) is pure. From lemma 4.7 we obtain that [P/X](G) is pure. By 
assumption AQ is pure, therefore AQ is a pure type. [??](AG') is pure by the side condition 
of the rule, therefore r]\Free^AG^ is strictly pure by lemma 4.4. Since 7/ = Vl\Free(Aa')i V 1S a 

strictly pure substitution. Consequently for all i: [rj\(P^) is pure, and therefore the proof 
term is a pure program. 

Other cases: straightforward. 
D 

Theorem 4.12 shows, that the rules of MLF preserve purity. This result is very useful, because 
the framework we designed should be restricted to pure objects, pure types, pure formulae and 
pure programs only. Committing ourselves to consider only a system of inference rules which 
preserves purity in this sense, does not seem to be of any disadvantage in terms of expressive 
power. In contrary, it makes it very clear, which LF object and which LF type is used where 
and how. In the following subsection we will even go a step further and restrict the inference 
system for MLF a little more. The result is a system we call pure MLF. 

4.1.3    Pure MLF 

The goal of this subsection is to refine the inference system of MLF to obtain a system we call 
pure MLF. Pure MLF has the advantage, that form a derivation of T \-% P G G and T, G pure 
in cut free MLF, P can be shown to be pure. 

We demonstrate the underlying idea at the example of the existential rule on the right: It 
has has currently the following form: 

rhEp'eÄ^  r\-zPe[p'/x](G) 
 R3 

r hE (inx P' P)  e3X : AG.G 

We want to avoid the generation of any impure objects, types, programs or formulae: there- 
fore the rules must be restricted to work on guaranteed pure version of objects, types, programs 
and formulae. We observe that the rule R3 does not fulfill this criteria, because [P'/X](G) may 
not be pure. This can happen because nothing is said about the form of P'. Since [P'/X](G) 
must be a well formed formula, we know because of lemma 4.9 that the substitution [P'/X] 
must be strict. Consequently P' can have two forms: P' = Y or P' = M. The existential rule 
can therefore be refined into the following two rules: 

r\-xYeA~3  r\-xPe[Y/x](G) 
 ; ; R3' rhs (inx Y P)  e3X :AG.G 

and the rule where P' is replaced by M: 

v\-EMeÄ3  rhEPe[¥/i](G) 

r hs (inx M P)  e 3X : AG.G 
R3" 
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The same argument can be applied to LV and we obtain the two refined version of LV: 

rltxe vy : AG.D,T2 hE x1 g A3  Ti,xe w ■. AG.p,v2,ze [*i/y](£>) hE p2 e G 
TuXeW :AG.D,T2\-x (let (app X Xx) be Z in P2) £ G 

and 

TuXeW : AG.D, r2hsM6^    T^X eVY : AG.D, T2, Z e [M/Y]{D) hE P2 e G 

Tu X e W : AG.D, T2 hE (let (app X M) be Z in P2) G G 

LV 

LV" 

A third refinement we have to do is again concerned with the case rule. In the previous 
subsection we refined case, by establishing a new side condition: AG has to be pure. This will 
not be enough for our following considerations: We have to establish a second side condition: 
AG by itself must be pure, too. Here is the new rule case": 

for all i < n 
hE [p/x](r)ctx rhEPel^   Aw,e w(r) hEp(») eew(G') 

■ case" 
/ case P of                                 \ 

[P/X](T) hE 
dyfl.i.UMtpW) 

\\    cnY}nK..Yt]=>[v](PM) ) 

e [P/x](G) 

where following side conditions hold: 

1. AG, AG is pure 

2. IndE,r(X, AG>) = {(A(1),e(1))..(A("),eW)} 

3. There is a rj s.t. [r)](AG') = AG) [r]](r') = T and [77](G') = G 

We call this refined version of the inference system for MLF as pure MLF. We have mentioned 
at the beginning of this chapter, that the inference system of MLF is not powerful enough to 
prove the following observation: Whenever T is a pure context, and G is a pure formula and a 
derivation T \- P e G holds, then P is a pure program. In pure MLF, we have all the ingredients 
to make the proof go through: 

Theorem 4.13 (Generalized Purity Preservation) Let T be a pure context, G a pure for- 
mula, P a program, and V a derivation of V :: T hE P £ G in the inference system of pure MLF 
without Cut. Then P is pure. 

Proof: By induction over the derivation V: 

Case: case': [P/X](T) is pure. If X e FreeiY) then Y is pure by lemma 4.6, else T is pure. If 
X G Free(G) then G is pure by lemma 4.8, else G is pure. B is pure and B' is pure, and 
therefore [rj\(B') is pure. By lemma 4.4 we obtain, that 77 = rj\preeßi is strict. We have 
[»7] (r") is pure (because T is pure) and because of lemma 4.11 we obtain T' is pure. The 
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same argument holds for [rj\(G'), which is pure since G is pure. Because of lemma 4.8 we 
know that G' is pure, too. Because of construction ©W is pure for all i. Thus, 0W(r') 
is pure. A^ is pure, too, because of construction. And finally ©M(G') is pure because G 
is pure. Therefore we can apply the induction hypothesis and obtain that the pW's are 
pure for all i. Therefore the [TJ](P^) are pure, and hence the proof term 

/ case P of \ 

a D\
1
\..D&\ =» [rj\(PW) 

\\   cnD^...D®L^[rj\{pM)) 

D 

is a pure program. 

Case: All other cases straightforward. 

4.1.4    Result 

In this section, we analyzed the notion of purity with respect to MLF and a refined version of 
MLF. We saw, that both systems, MLF and pure MLF preserve purity. Working in pure MLF 
has the big advantage, that if we do not use the Cut rule in proofs, a purely stated goal G 
implies that the program P is pure. This is because theorems are stated as • hs P G G with 
an empty context. Therefore, if the goal G is pure and since cut is not used, then the program 
we obtain will be pure. Furthermore, theorem 4.13 is a little more general then that: It also 
shows, that the results of every subderivation in pure MLF is pure, that is context, programs, 
and goal formulae will all be pure. We can therefore conclude, that for proof search without 
cut, the underlying object theory can be restricted to pure objects only. 

4.2    Local reductions 

In this section we show the local reduction property of MLF. Local reductions are part of the 
cut elimination proof. At the moment it is not clear, if a general cut-elimination result holds at 
all or not. This section is divided into two parts. In the first part we give some lemmata which 
are necessary to perform the proof of local reductions theorem. The proofs of the lemmata can 
be found in the appendix C. In the second part of this section we discuss the problem of local 
reductions. 

4.2.1    Admissibility of Weakening and Contraction 

As we have seen in the definition of the MLF inference rule system, there are no structural 
rules defined. The reason was, that we defined the system along the lines of LJ, as described 
in [Pfe94c]. The motivation to forget about structural rules and to show their admissibility 
later, is easily motivated.  First of all we want to reduce the complexity of the inference rule 
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system. Second — as shown in [Pfe94c] — cut elimination as a proof becomes suddenly feasible 
by structural induction and not any more by induction over a complexity measure. 

The intuitionistic sequent calculus contains three structural rules. Weakening allows to 
add additional formulae to the context, that is the set of formulae on the lefthandside of the 
sequent symbol. Then there is contraction, which allows the removal of identical copies of 
formulae from the context. And finally there is the exchange rule. The exchange rule makes 
context independent of the order of the assumptions. We cannot expect the admissibility of the 
exchange rule for MLF, since formulae can dependent on variables which have to be introduced 
earlier into the context, exchange would destroy this property. But fortunately, we can show 
the admissibility of weakening and contraction: 

Let V :: T hE P G G be a derivation of a sequent. Weakening V means to add a new 
assumption into the context T. The position of the inserted assumption is essential because the 
order of the assumptions reflect the dependencies of the types. To insert an assumption X 6 G 
into T we have to split T into Ti and ]?2. To express that V is a derivation which is weakened 
by inserting X eG after Ti we write V[Ti \/ X £ G]. First a little preparatory lemma: 

Lemma 4.14 (Context extension) Let Ti,T2 be contexts, s.t. hE Ti,^ ctx. Let D be for- 
mula, s.t. T\ hE D data, then hE Y\,X e D,T2 ctx 

Proof: see appendix C D 

Recall, that we do not check the context in every rule. This is done only in the leaves. 
While applying rules, the context shrinks. It is easily seen, that this shrinking process cannot 
invalidate the context — except in the case rule. But here, we make sure, that the context is 
really a context, by adding the judgement hE [P/X](T) as a new premiss. 

Another result we need for the admissibility proofs is how substitution effects objects, types, 
kinds and goals: This lemma is necessary for the weakening proof: The lemma is used only 
in the case case: We have to make sure, that weakening still works, even after applying the 
strict substitution 0 to the context of some of the premisses. The lemma would be easier to 
prove, if we work with rule 3.5, but since the proof is not much more difficult with rule 3.4, 
we simply proof the more complex lemma. The proof of the lemma is a mutual induction over 
ten judgments simultaneously. Later on we will have to prove to more lemmas, which are of a 
similar form. 

Lemma 4.15 (Substitutions effects) LetD be a data formula, P a program, K a kind, M an 
object and Ap an atomic type, Aa a goal type and An a data type. Let a be a strict substitution, 
Free(a) fl sup(T) = 0 and A be a context with \- A ctx which introduces the new variables used 
in a. Let V = A, [c](T) and A' == [a](A). Then for all V meta context and A object context: 

T; A hE-K kind => T'; A' hE [a](K) kind 

T;A\-xAp:K =* r'; A' hE [a]{AP) [a](K) 
r;AhEAG:K => r'; A' hE [a](AG) [a](K) 
T;AhzAD:K => V; A' hE [a](AD) [a](K) 

T;AI-EM:Ap => r'; A' hE [a]{M) [<J](AP) 
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r;AhsM:AG   =*   T'-A'\-E[a](M) [a](AG) 

r;AhsM:iD   =*►   r';A'hs[o-](M)[a](AD) 
r hE D dato   =>•   r' hE [ff](D) dato 

rhEPGG =*►  r'hs[a](P)eM(G) 
i-E r cte =^>   hE r' cte 

Proof: The proof goes by simultaneous induction over the structure of the assumptions. For 
the base cases you will need lemma 3.25, especially in the case 3.5. The strictness condition 
is needed for the cases LIT, LIIV and LIIS, LilEV. In the case case, we have to choose a new 
rf = © o rj. D 

This lemma is needed when we want to prove the admissibility of weakening. 

Lemma 4.16 (Weakening) Let V :: ri,r2hEP G G, £ :: rx hE D' data and X' $ 
dom(TuT2), then V[TX MX' G D'} :: TUX' G D',T2 hE P G G where X' is new meta vari- 
able and D' is a data formula, depending only on variables in Ti. 

Proof: The proof is done by induction over the derivation V. We describe two cases here, the 
other cases are described in appendix C. 

Case: R -K By assumption we have a sequent of the form ri, T2,X G D hE P G G, it is clear, 
that the induction hypothesis is applicable. Its application yields: Ti,X' G D', T2,X G 
D hE P G G. but now the premiss for the rule R -» is still fulfilled, and we can apply it 
to obtain: Ti, X' G D', T2 hE (fun X.P) eD^G. 

Case: case: The case rule is a little bit more complicated. By assumptions we have a derivation 
for Ti,T2 \- P e AQ- By application of the induction hypothesis, we obtain Ti,X' G 
D', T2\- P G AQ. Note now, that we still can use the same n for the rule, since AG didn't 
change. Take the i-th premiss of the rule: By lemma 3.32, we know that hE AW ctx and 
eW strict. Therefore A«, [6W](ri) I- [0^]{D') data by lemma 4.15. By applying the 
induction hypothesis, we obtain 

A« [e0](ri),x' G [e«](£>'), [e«](r2) hE p« G [e{i)](G) 

This holds for all i, therefore we can apply the rule case to obtain 

/ case P of \ 

rux'eD',r2\-E 
ciy/'lyJiUhKfC)) 

\\ cny("»..yi:UM(F(«)) ) 

eG 

D 
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We now address the problem of the admissibility of the contraction rule. The property 
of contraction becomes necessary in the proof of the local reduction theorem, the goal of this 
section. Contraction means, that if there are two meta variables declared in the context of the 
same meta formula, all occurrences of the latter may be replaced by the former one. This rule 
is essential for classical and intuitionistic proof systems. 

For contraction we want to prove, that whenever V is a derivation of Ti,U G H, r2,F G 
H,T3\-EPeG we can find a derivation for rx, U G H, T2, [U/V](T3) hE [U/V]{P) G [U/V](G). 
When looking at the rule set, we see that the typing rules for programs refer to the judgment 
for well-formed contexts. Furthermore, the typing rules for well-formed contexts refer to the 
judgment T hE D data. The contraction lemma can only be proven by a complicated mutual 
inductive argument. 

If we would work in a system with rule (3.5), the proof of the next theorem would be less 
complex, but even with the rule (3.4), the result is fairly easy to show. We prove the contraction 
theorem by mutual induction very similar to the proof of lemma 4.15. 

Lemma 4.17 (Contraction:) Let D,D' be data formulae, K a kind, Ap an atomic type, AQ 

a goal type, An a data type, M an object and P a program. Then the following holds: For all 
meta contexts Ti, T2, r3) and for all object context A: LetT = T1,U e D', T2, V G D', T3, and 
T' = T1,Ue D', r2, [U/V](T3) and let A' = [U/V](A) and a = [U/V]. Then we have: 

T; A hE K kind   =4> r';A'hE [a]{K)kind (4.1) 

r;AhEAP:K   => T';A'hj:[a](Ap):[a](K) (4.2) 

T;A\-xAG:K   ^ r';A'^[a](AD):[a](K) (4.3) 

T;AhxAD:K   =*► T';A'^[a](AG):[a](K) (4.4) 

r; A hs M : AP   =^ r';A'hE[a](M):[a](AF) (4.5) 

r; A he M : AD   =^ r';A'hE[a](M):[a](AD) (4.6) 

r; A hs M : AG ■ =► V;A'\-Z[<T](M):[<T](AQ) (4.7) 

rhsZ) data   =^ V hE [(j](D) data (4.8) 

r\-xPeG =» r'>sM(P)6H(G) (4.9) 

hj; T ctx   =^> r-s r' ctx (4.10) 

Proof: by mutual induction. The detailed proof can be found in appendix C. D 

This lemma brings us directly the desired result: 

Theorem 4.18 (Admissibility of Contraction)  : // 

rll[/eD',r2)F€i)')r3h£PGG 

then 
r1IJ7e£>',r2,[or](r3)i-EM(p)eM(c?) 

with a = [U/V]. 7/r3 is pure, P is pure and G is pure, then [cr](T3), [c](F), [o"](G) are pure. 

Proof: The first result is a restatement of (4.9), the second follows directly, because a is strictly 
pure. D 
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4.2.2    Substitution lemma 

The next lemma we introduce is the substitution lemma. It is not a logical rule like weakening 
and contraction, but it represents in a way the connection between LF and the meta logic. 

Assume we have a derivation of T hE P G G. This can be interpreted from a programming 
point of view, as: When all variables in T are instantiated with some programs, P will compute 
a proof term of G. It could be that we have a declaration of the form X G A in the context 
T. Under the interpretation this reads, for a given LF constant c : A, we can plug c into the 
variable positions in P. The evaluation of P will provide a proof object of G. 

In the next section we are concerned with local reductions. One local reduction which might 
occur is exactly of this form: Assume we are given an object c : A, and a derivation of Ti, X G 
A, T2 hE P e G, then we would expect the existence of a derivation ri,[cr](r2) hE [a](P) G 
[a](G) where <T=[c/A"]. 

The substitution lemma shows, that this holds. We can assume, that A are closed with 
respect to object and meta variables. 

Lemma 4.19 (Substitution property:) Let D be data formulae, K a kind, Ap an atomic 
type, AQ goal type, AD, A data types, M object and P a program. For c : A G S the following 
holds: For all meta contexts Ti,r2, and for all object context A: Let T = T\,Z G A, Y2, and 
V = Ti, [c/Z](T2) and let A' = [c/Z](A) and a = [c/Z]. Then we have: 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Proof: by mutual induction. The detailed proof can be found in appendix C. □ 

r;AhEif kind => r';A'hE [a](K)kind 
T;A\-xAP:K => T'-A'^[a](AP):[a](K) 
r;AhsAG:K => r';A'hsM(AG):[a](/0 
r;A\-xAD:K => r';A'hE[a](AD):[a](/0 
r; A hs M : AP =^ r';A'hE[<7](M):[a](Ap) 
T;A\-EM:AG =4» r';A'hE[(r](M):[a](AG) 
r; AhsM:AD =^ T';A'^[a](M):[a](AD) 

r hg D data =*> r'hE [a](D) data 
r hs P G G =*> r'hcM(P)GM(G) 

hs T ctx => hE r' ctx 

A reformulation of this lemma gives us the desired substitution lemma. 

Theorem 4.20 (Admissibility of Substitution)  : IfTuZ G A,T2 hE P G G, and c : A G 
S, then 

r1,M(r2)hsM(F)G[a](G) 

with a = [c/Z]. IfT2 is pure, P is pure and G is pure, then [ff]^), M(-P), M(G) are pure. 

Proof: The first result is a restatement of (4.19), the second follows directly, because a is strictly 
pure. D 
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4.2.3    Local reductions of MLF 

In this section we show local reductions for MLF. The problem of local reduction can be cir- 
cumscribed as follows: Assume there there are two derivations: 

Vi V2 

Ti l-s Fi G C     and     T2 hs P2 G G 

The derivation V\ constructs a proof term Pi, and the derivation V2 "wants" to consume Pi. 
There are different ways, of how this consumption may take place: One possibility is to cut V\ 
with V2. To do so, T2 must be equal to Ti, X G C, T'2. We write 

TihEPiGC   ^   r1,xeC,r'2\-xP2eG 

to describe this cut operation. 
But the cut operation is not the only rule, which has this consumption property: Another 

rule is the case rule. The rule is restricted to C being an embedded type AQ- On the other side, 
there is not only one derivation V2 but many — one derivation for every form of the outermost 
constructor of P. 

The aim of a local reduction theorem is to show that derivations can be locally reduced. The 
cut rule and the case rule must be displacable from their positions, but a derivation with the 
same conclusion can still be found. 

In this work we present a local reduction theorem only for the cut case. It seems quite 
possible, that the theorem can be extended to the case case — but such an examination would 
be beyond the scope of this thesis. 

We can put the proof term Pi into the center of our consideration. In our proof of local 
reduction, we examine the different forms a program Pi can take. Since we decided to omit 
case, we have to exclude embedded LF objects as possible proof terms Pi. The argument for all 
other forms is very close to the essential cases in the cut theorem in [Pfe94c, Pfe94b]. Here is 
the theorem: 

Theorem 4.21 (Local reductions in MLF:) IfV :: rx h P' G C, P' ^ M and £ :: YUZ G 
C, T2 h P G G then there is a derivation T, s.t. T :: Ti, cr(r2) h cr(P) G a(G) with a = [P'/Z]. 

Proof: The detailed proof can be found in appendix C. □ 



Chapter 5 

The example revisited 

In section 2.1 we introduced a toy programming language T and its natural and operational 
semantics. We described its representation in Elf and Coq. We showed the equivalence of 
both semantical notions in the equivalence theorem 2.2. When using Coq as a representation 
mechanism we took advantage of its inductive reasoning component. We proved the append 
lemma 2.7, the subcomputation lemma 2.1 and the equivalence theorem 2.2 using the Coq proof 
engine. The representation of T and both semantical notions in LF and Elf was straightforward. 
In this chapter we discuss how MLF can be used to prove the append lemma, the subcomputation 
lemma and the equivalence theorem. 

5.1    Append Lemma 

We have seen in the definition of a multi step relation the the concatenation of a single step 
transition and a multi step transition results in a multi step transition. We have also seen in the 
proof of the subcomputation lemma 2.1, that a more sophisticated concept of concatenation is 
required: It is not enough to extend a trace by one single step transition up front. It has to be 
shown, that two traces can be concatenated to a new longer trace as long as the final state of 
the first coincides with the start state of the second. This property is represented by the lemma 
append: 

Lemma 2.7 (append) For every two traces T : S 4> S' and T' : S' =$■ S" there exists a trace 
R:S^> S". 

The objective of this section is to present a derivation of the append lemma in MLF. To 
do so, we transform the lemma into a sequent in MLF: We start with an empty context. The 
formula can be represented as a MLF goal formula: 

VS : state. VS' : state. VS" : state. VT : S 4> SL. VT' : g_ 4> Sü_. S 4> SÜ 

We obtain the following sequent: 

\-E     Vi € VS : state. VS' : state. VS" : state. VT : S 4> &.W : S^ Sü_. S 4> SÜ 

89 
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We will now give a derivation for this sequent in MLF: We apply the MLF typing rules in 
a bottom to top fashion. We will not construct the proof terms explicitly. The proof terms are 
getting rather big, because we will very often apply the LV rule. Therefore instead of writing 
the proof terms, we use Vo, V\.... as a variable notation for omitted proof terms. 

Proof: We will now begin with the presentation of the proof in MLF: The first thing to do, is 
to provide the induction hypothesis. This is done by using the rec rule. We will omit the proof, 
that F \ Vo- It will become clear, that there is a suitable termination ordering. The proof is 
done by structural induction. 

F € VS : state. MS' : state. MS" : state. MT : S 4> S'. MT' : S' 4> S". S 4> S" 

hs     V0eMS: state. MS' : state. MS" : state. MT : S 4> Si. MT' : SL^ S^. S 4> SH 

The contexts will contain many variable declarations. Instead of listing them all, we abbre- 
viate the contexts, by omitting the corresponding data formulae for all those variable which do 
not participated in a rule application. Because of the form of the goal formula, we can can now 
apply the rule RV four times and obtain: 

F,S £ state, S' 6 state, S" € state, T e S 4- & 

hE    VxeMT :SLA S0_. s^sa 

In the informal proof we showed the append lemma by induction over the first derivation. 
Consequently, the next rule to apply is the case rule and not the RV rule. The application of 
the case rule is triggered by the axiom derivation 

F, S, S', S", TeS^Sj 

hs   TeS^Si 

We now construct the set Inds)r(T, (S_ =» 5Q). It has two elements: 

((D e state), 
(D/S,D/S'M/T)) 

((D e state, D' e state, D" g state, E G D =» Di, E' e DL ^ DO) 
{D"/S, D/S',~ DD!_D!HE EL/T)) 

We abbreviate both entries of IndE,r(T, (£=*> S!_)) for now by (A(1),0(1)) and (A(2),G(2)). 
For a successful application of the case statement we have to prove two judgments. The first 
results from extending the current context by A^1), and applying the substitution 0(*) to the 
current context and the current goal formula. Similarly, the second results from using (A^2), 0(2)) 
instead of (A^^W). 

Case: (A^1), Q^1'): The current sequent has the following form 

D £ state, F, S" 

hE    V2eMT' :D^S!i.D^S!!_ 
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One application of RV yields: 

D, F, S", V e D^SH 

hs    T': D 4> sa 

The first proof branch is closed using id again,   it corresponds to the base case of the 
induction. 

Case: (A'2), O^2)): The current sequent has the following form: 

D e state, D' € state, D" e state, E £ D => DJ_, E' £ DJ_ 4> D±, 
F, S"   

hs     P3eVT':DH_£S!L.D£Sl 

First we apply RV: On the right side of the sequent symbol remains an embedded LF type. 
The objective is it now, to use the context and the signature to provide a proof object of 
this type. 

D, D', D", E, E', F, S", T'eD!L^SH_ 

hE     V4eD^SH. 

The only way to do so, is to apply the induction hypothesis: We expect a proof term for a 
trace, which ends in the state S". The induction hypothesis is applied to five parameters: 
D' D" S" E' T', i.e. five applications of LV yield: 

D, D\ D", E£D^Ly,E', F, S", T',R5eDj^SH_ 

\-x    V5eD^S!L 

From looking at this rule, it is obvious that E and R5 have to be concatenated. Since E 
is a single step transition, it is enough to apply rule LIIE with constant ~ and parameter 
D. We obtain the an assumption Si of the embedded partially instantiated type of ~ : 

£>, D', D", E£D=>D!_,E', F, S", T',R5eLV^S!L  

Si € IlSt' : state. USt" : state. D =»• St' -> St' 4> St" -)flj> St" 

Si represents an embedded function type, which must be applied to four more parameters 
to represent an embedded objects. To do so, LII has to be applied four times to D' S" E R5. 
We neither give the intermediate steps nor the intermediate additional assumptions: The 
current sequent in the proof is 
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D, D',D",E,E', F, S", T', R5, SUSS£D^S!L 

^E   S5eD^S!L 

This sequent can be closed using the axiom rule id. 

D 

5.2    Subcomputation Lemma 

We address now the proof of the subcomputation lemma from section 2.1. The subcomputation 
lemma is a generalization of one direction of the equivalence theorem. Here is the formulation 
of the lemma — this time directly formulated in terms of LF type theory: 

Lemma 2.1 Let K be an environment, E be an expression and V be a value. If D is an object 
in (feval K E W) then for all H environment stack, P program and S value stack we can find 
a proof term E' in 

st {H;;K) (ev EkP) S 4> st H P (S;W) 

We know, that we will apply the append lemma in the proof— this is exactly why we proved 
the append lemma in MLF. Lemma application is done by applying a cut. For the proof, we 
have to assume that we have the lemma handy. We will therefore prove the subcomputation 
lemma under the assumption, that lemma append is available. This is done by declaring the 
variable Append of type 

MS : state. MS' : state. MS" : state. MT : S^> &.W : S!_^> S!L- S 4> SH 

and putting this new declaration into the context. The representation of the the subcomputation 
lemma as a sequent in MLF is as follows: 

Append G MS : state. MS': state. VS" : state. MT : S ^> SL. VT' : & 4> £0, S 4> SH 
hs     V0e\fK : env. ME : exp. MW : val. VD : feval KEW.  

Vff : envstack. VP : program. VS : env. st (H;;K) (ev EkP) S^stHP (S]W) 

Proof: As in the proof of the append lemma we provide the induction hypothesis as a first step 
in the proof. 

Append, 
FeVK : env. V£ : exp. MW : val. VD : feval KEW. 

\/H : envstack. VP : program. VS : env. st (Hy,K) (ev EkP) S^stHP (S$V) 
hs     Vi G VÄ" : env. ME : exp. MW : val. VJD : feval KE W.  

MH : envstack. VP : program. MS : env. st (£;;2jQ (ev EkP) S^stRP (S;W) 

The objective is now to decompose the goal formula. We propose to apply RV four times. 
The variable D is the variable we want to perform induction over. 
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Append, P, P G env, P G exp, W G val, D G feval KEW 

hE     V2eVH : envstack. VP : program. VS : env. st (P;;P) (ev P&P) 5 4> st P P (£;ED 

Induction is performed by case distinction over feval P P W_.   First we construct the set 
Inds)r(-D, feval P EW): it contains four elements: 

{((K0Genv,WoG väT), 

(P0/P,T/P, W0/W,evl Pg WQ/D)), 

((P0 G env, E0 G exp, W0 G väl, WQ" G väl, D0 G feval P0 E0 Wp), 

((K0 G env, P0 G exp), 

(P0/P, lam EQJE, clo Pp_ (lam Eo)/W, evlam Po EQJD)), 

((PI G envP2 G exp, P{ G env, E'2 G exp, P3 G exp, W3 G väl, Wi G väl, 

Pi G feval P^ (clo P[ (lam P0), P2 G feval Pi PsWs, 

P3 G feval (K[;W3) E'2\Vß, 

(Ko/K, app P2 Ps/P, Wb/W, evapp Pi Ez K[ P£ E3 Wz W L\ L\ D£)/D)} 

The application of case leads now to four new judgements defined by current sequent and 
each entry (AW,©W) G IndSir(D, feval P E W_). We address the derivation of each of those 
four judgments: 

Case: evl: The first case corresponds to the base case. The current sequent is extended by A^1) 
and the substitution ©W is applied to the current context and the current goal formula: 

Po G env, Wo G val, Append, F 
r~s     P3 G VP : envstack. VP : program. VS : env. 

st (P;;P) (ev l&P) S^ st HP (5; Wo) 

The goal formula can be further decomposed by applying RV three times: 

Po, Wo, Append, F,H G envstack, P G program, S G env 

hE    V4 G st (P;;(Po;Wo)) (ev l&P) S 4 st H P (S;WpJ 

For this goal we can find a constant in the signature, which yields an instance of the desired 
type: c_l H Po Wo P S. To obtain the proof object, we have to apply LIIS once — the 
parameter is P, and four times LIT. 

Po, WQ, Append, F, H G envstack, P G program, S G env, 

P5 G st (P;;(Pp;jfo)) (ev 1&P) S 4 st H P (S;Wp) 

hE     R5 G st (P;;(Po;Wo)) (ev l&P) S 4 st H P (S;Wo) 

Finally we can close this branch with id: The first base case is proven. 
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Case: evf:      The   next   judgment   is   the   result   of   applying   the   second   element   of 
Indy^rf-P.feval K E W) to the current sequent. We obtain the sequent: 

K0 G env, E0 G exp, W0 G val, WQ G val, D0 G feval Ko Eo WO, Append, F 
l~S     *Ps € VK : envstack. VP : program. 

V5 : env. st (tf ;;(Kg;W£)) (ev (Egt)&£) S^stHP (&Wo) 

As in the last case, the goal formula is decomposed by three times applying RV, we obtain 

Ko, Eg, W0, Wj D0, Append, F, 
H G envstack, P G program, S G env 

hs     V6 G st (S;;(^o;^)) (ev (E^)kP) S^stHP (S;]fo) 

Examining this sequent we see, that the induction hypothesis F can be applied to D0 to 
obtain a trace which ends in the desired state. To apply the induction hypothesis, we have 
to instantiate all universal quantifiers of F with a list of parameters: K0 E0 Wo Do H P S: 
After seven applications of LV we obtain 

Ko, Eo, W0, W&, Do, Append, F, H, P, S 

R7 G st (ff ;;Kp) (ev EpkE) S^stHP (£;WQ) 

hs    V7 G st (#;; (Kg;WoO) (ev (Etf) kP)S^stHP (£; Wg) 

By using HIE to access c_ f with the argument H and by applying LII with the newly 
generated function five times to the parameters Ko WQ E0 P S we obtain a proof term Se 
of a trace, which starts in the same state as the embedded goal formula, and ends in the 
state where R7 starts. 

K0, Eo, Wo, W£, Do, Append, F, H, P, S 

R7 G st (S;;Ko) (ev EokP) S^stHP (S;Wg) 
Se G st (g;;(jfo;W%)) (ev (Egt)feP) S =» st (HV,KQ) (ev EpkP) S 

^s    Vs G st (£;;(Kg;J^)) (ev (£bt)&£) S^stHP (5;Wb) 

All what remains to do is to concatenate both traces, witnessed by S& and R7 to obtain 
the desired trace. We do this, by constructing a new trace using the trace construc- 
tor ~ . This is done by using HIS once and LII four times with a list of parameters: 
st (#;;(Kg;W£)) (ev (Eot)kP) S, st [H;;Ko) (ev EokP) S,stHP (5;W^), 56, R7: We do 
not show how the composite objects are proven type correct. Here is the final sequent: 
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K0, D0, W0, W0, Do, Append, F, H, P, S, 
R7, Se 

T5 G st (F;;(Ko;WS)) (ev (Dot)&£) S 4- st H P (£;Wb) 

hE    r5 e st (fL;;(Äo;W£)) (ev (D,t)&P) S ^> st D P (£;Wb) 

which can be closed using id.  This proof branch is closed and we can address the next 
case. 

Case: evlam: This case addresses the treatment of A-abstraction. The sequent is obtained, 
by using the original sequent and applying (A(

3
),Q(

3
)}. This proof branch is therefore 

initialized by the following sequent. 

Ko G env, Do G exp, Append, F 
r-£     VQ G VD : envstack. VP : program. MS : env. 

st (H;;Ko) (ev (lam Do)&P) S 4- st H P (5;(clo Ko (lam Do))) 

As in the last three cases, We apply the rule RV three times and obtain the sequent: 

KQ, E0, Append, F,H£ envstack, P G program, S G env 

\~z    Vw G st (H;;Ko) (ev (lam Do)&P) S 4- st # P (S;(clo KQ (lam Do))) 

By providing the correct parameters to cJam — H Ko EQ P S we obtain after one HIE 
and four LII rule applications the sequent: 

K0, D0, Append, F, H, P, S, 
R5 G tf~(H;;Ko) (ev(lam DpjfcP) S =» st H P (5; (clo Dp (lam Dp))) 

hE     R5 G st (D; ;Äjj) (ev (lam Do) &£) 5 4- st D £ (S; (clo Dp. (lam Do))) 

which can be closed by id. The third case is proven. 

Case: evapp: The proof for the last case is the most complicated one. Three applications of 
the induction hypothesis and two applications of the append lemma are necessary to prove 
this branch. As usual, we obtain the initial sequent from the current one after applying 
(A^4), 0(4)) to the current sequent: 

K\ G env, D2 G exp, K[ G env, E'2 G exp, D3 G exp, W3 G val, W\ G val, 
Di G feval Ky Eh (clo K[ (lam Eß), 
D2 G feval D1D3W3, 
D3G feval (D[;W^)D£W_i 
Append, F 

l~£     ^11 G VD : envstack. VP : program. VS : env. 

st (D;;Di) (ev (app D2 D3J&P) S 4- st D P (5;Wi) 
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To get rid of the forall quantifiers in the goal formula, we have to apply the RV rule three 
times. 

KuE2,K[,E2, E3, W3, Wu Dh D2, D3, Append, F 
H G envstack, P G program, S G env 

hE     V'u G st {H-K^ (ev (app Eg E^kP) S^stHP {S^Wß 

This time, we go through the proof in a very forward directed way: We first try to generate 
a transition from the start state of the embedded goal type to some other state. The only 
way to do so is to use c_app. Since this is a constant defined in the signature, LIIE is 
applied with the parameter H, to move it into the context. Then LII is applied five times 
with five more parameters K\ E2 E3 P S. We obtain 

Ki, E2, K[,E'2, E3, W3, Wu Du D2, £>3, Append, F, H,P,S 
U6 G st (ff;;Ki) (ev(app ifr jk)fe£) S     

=» st {H-Ki-Ki) (ev Egkev ^fcapplyfcP) S 

\-E    V12 G st (H-;Ki) (ev (app EgE^kP) S^ st HP (&W£ 

Next, we try to go from the final state of U$ to some other state. Obviously, we have 
to construct a trace which starts in the final state of UQ. It is easy to see, that this 
trace is provided by applying the induction hypothesis to D\, since this is the only 
proposition in which E2 occurs. The application of LV seven times with the parameters: 
Ki, E2,clo K[ (lam E2), Di,H;;Kl,ev i^j&apply&P,S yields a proof term of the desired 
type: R7. 

Ki, E2, K[,E'2, E3, W3, Wu Du D2, D3, Append, F, H, P, S 
U6est (H-Ki) (ev(app Eg Eg)kP) S 

=»• st (ff;;Ki;;Ki) (ev ij^fcev ffsfeapplyfeP) S 
R7 G st (ff;;/£]_;;Ki) (ev Egkev ffgfeapplyfeP) S      

4> st (H ;;Ki) (ev Eg&apply&P) (5;(clo K[ (lam E£))) 

h-s     Vi3 G st {H;;Kj) (ev (app Eg E^kP) S^stHP (5;Wi) 

Now we are in the situation where we have a single step transition U& and a multi step 
transition R7 which should be concatenated. This is done by the multi step transition 
constructor ~ . To apply G £ we have to apply LIE once and LII three times with four 
parameters 

1. st (g;;-^i) (ev(app £2 E^kP) S  
2. st {H^Ku^Kj) (ev Egkev gsfeapplyfeP) S  
3. st (H ;;Kj) (ev .Es&apply&P) (5;(clo K[ (lam E£)) 
4. Di 

The result of this application is the following sequent. Note that 54 stands for the newly 
constructed trace. 



5.2.  SUBCOMPUTATION LEMMA 97 

Ku E2, K[, E'2, E3, W3, WuDu D2, £>3, Append, F, H, P, S, U6, R7 

S4 e st (H;;K£) (evfappi^i^feP) S 

j> st {H ;;K£} (ev ^fcapplyfcP) (5;(clo K[ (lam E£)) 

\~E    Pu € st (Hy,Kj) (ev (app E^ E^kP) S 4> st H P (5;Wi) 

The next step is to construct a trace starting in the final state of S4 and lead- 
ing to some other state. This time the induction hypothesis has to be applied to 
D2: This is done by applying LV rule seven times with the following parameters: 
Äi, E3, W3, D2, g,applyfcP,5;(clo K[ (lam E'2)). The result is the sequent 

Ki, E2, K[, E'2, E3, W3, Wu Du D2, D3, Append, F, H, P, S, Ue, R7 

S4 G st (Hy,Ki) (ev(app Eh E^kP) S   

=» st {H ;;^i) (ev ^fcapplyfcP) (5;(clo K[ (lam E£)) 

V7 e st (H;;Kj) (ev ffgfeapplyfeP) (S;(clo K[ (lam ££))) 

4> st H (apply&P) (5;(clo K[ (lam ^));W^) 

l-s     Viz e st (H;;Ki) (ev (app fy E^kP) S 4> st H P {S^Wß 

We observe, that there are now two multi step transitions, S4 and V7. We cannot used 
to construct a concatenation trace: S4 is not a single step transition. We have to use the 
lemma Append. The rule LV has to be applied five times with the following parameters: 

1.   st (g;;Ki) (ev(app EjE^kP) S, 
2. st (#;;Ki) (ev Es&apply&P) (5;(clo K[ (lam ££))), 
3. st H (apply&P) (5;(clo K[ (lam -^));]4), 
4. 54, 
5. V7 

we obtain the new sequent with the newly concatenated trace as W5: 

Ki, E2, K[, E'2, E3, W3, Wu Du D2, D3, Append, F, H, P, S, U6, R7,54, V7 

W5 e st (H-Ki) (ev(app fy E^kP) S 

^stH (applykP) (5; (clo K[ (lam Eß); W3) 

^E    Pin € st (F;;Ki) (ev (app EhE^kP) S^ st HP (S;Wi) 

As above, we try to construct now some trace starting in the final state of W$ leading to 
some other state. We have to use the constant c_apply G S. To apply the rule, we have 
to apply LIIS once and LII six times with the parameters H P S K[ E'2 W5. The newly 
generated trace is called X& 
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KX,E2, K[, E'2, E3, W3, WUD1: D2, £>3, Append, F, H, P, S, U6, R7, S4, V7 

W5 € st (Hy,Kß (ev(app #2 i^)feP) S  

4> st H (applykP) (5;(clo K[ (lam i%));jj^) 
X6estR (apply feP) (5;clo K[(lam iffijgj) 

=> st (F;;(Ä-{;W^)) (ev ££&P) 5 

^E    PIT € st (#;;.Ki) (ev (app Eh E^kP) S^ st HP (£;Wi) 

In this situation it is tempting to try to connect W5 and X6 to a trace, and then try 
to close the gap between the final state of XQ and the final state of the trace described 
by the embedded goal formula. It turns out that this is not the best way to go. The 
reason is, that we can connect a one step transition with a multi step transition because 
of the constructor " , but it is difficult to connect a multi step transition with a single step 
transition. Lemma Append guarantees that we can concatenate two multi step transitions, 
but at this point of our consideration, we would have to invest more reasoning to derive a 
similar lemma for single step and multi step traces. We will not do this. Instead we will 
try to construct a trace starting at the final state of X6 and leading to the desired final 
state. If it turns out, that this trace is only a single step transition, we have to prove the 
lemma. But fortunately, it will turn out to be a multi step trace. Then, we can apply 
lemma Append again. 

To bridge the gap between the final state of X6 and the desired final state, we have to 
apply the induction hypothesis again. We make the observation that D3 states something 
about the evaluation of E2. To apply the induction hypothesis F we have to use the rule 
LV seven times with the parameters (K\;W3),E'2, W\,D3,H,P,S. We obtain: 

Ki, E2, K[, E'2, E3, W3, W1} Du D2, D3, Append, F, H, P, S, U6, R7, S4, V7, 
W5 e st (ff;;gi) (ev(app EL ffgjfeP) S  

4> st H (applyfeP) (5;(clo K[ (lam i%));Wb) 
X6 e st H (apply feP) (5;clo jf[(lam Ej);W3) 

=> st (Ü;;(Ä-J;W^)) (ev E'2kP) S 

Y7 G st (H;;(K[;YV3)) (ev E'2kP) S 

stHP&Wi) 

^E    Pis € st (F;;Ki) (ev (app EL E^kP) S 4> st H P (S;]^) 

All what remains to do is to concatenate X& and Y7 with the constructor ~ gS, The 
resulting trace is a multi step transition and has to be connected to W5. To concatenate 
X& and Y7 we apply LI1E once and LII four times, with the the following list of parameters: 

1. st A (applykP) (5;clo Ä£(lam Eß ; W3) 

2. st (S;;(Äl;W^)) (ev E^kP) S 
3. st H P (5;Wß 
4. X6 

5. Y7 



5.2.   SUBCOMPUTATION LEMMA 99 

The result is the following sequent: Z5 is the new trace. This trace has to be appended to 

Ki, E2, K[, E'2, E3, W3, WUD^ D2, D3, Append, F, H, P, S, U6, R7, S4, V7, 
W5 € st (H-Kß (ev(app £2 ff3)feP) S  

4- st H (applykP) (5; (clo K[ (lam E£) ;W£) 

^6,^7- ■  

Z5 e st H (applykP) (Sjclo Kj_(lam Eft-W^ 

4> st HPjSJyß  
l-E     V19 € st (ff ;;Äi) (ev (app Eh E£)kP) S^stHP (S;Wi 

The final step in this proof is to concatenate W5 and Z5:  We do this by using lemma 
Append as above, this time with the parameters: 

1. st (ff;;jfi) (ev(app E2 E^kP) S 
2. st £ (apply&P) (5;clo Kjßzm E%) ; W3) 
3. st H P (£;W£ 
4. W5 

5. Z5 

the final sequent has the following form: 

Ku E2, K[, E2, E3, W3, WuDuD2l D3, Append, F, H, P, S, U6, 
R7, S4, V7, w5, x7, y7, z5,  

A5 e st (ff;;/^) (ev(app Eh E^kP) S^ st HP (5;^) 

hE     A5 G st (H;;KX) (ev (app £2 £3)&^) S ^ st H P (5;Wi) 

Obviously, A5 is of the desired embedded goal type, id closes this branch and completes 
the proof the the subcomputation lemma. 

We proved the subcomputation lemma under the assumption that we have a lemma accessi- 
ble, which guarantees the concatenation of to traces: the lemma append. In the proof, we do not 
refer explicitly to the proof of the append lemma only to the variable Append, which is present 
in the context: The proof of the subcomputation lemma was done in a non-empty context. The 
objective is to proof the subcomputation lemma — without any further assumptions. To do so, 
we have to bring the proofs of subcomputation lemma and the append lemma together. This is 
done by using the cut-rule. In section 5.1 we have seen, that it is possible to derive a proof term 
P of the append lemma: 

hs     PeVS: state. VS" : state. V5" : state. VT : 5 4> SL.W : S!_^ S0_. S 4> SH 

Because of the subcomputation lemma, we have a derivation of a proof term Q: 
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Append £ VS : state. V5' : state. \/S" : state. W : S^ &.VT : &^ S0_. S^ S!L 
hs     Q e VK : env. V£ : exp. W : val. V£> : feval £ gVF.  

Vtf : envstack. VP : program. VS : env. st (J£;;2jQ (ev £&P) £ 4> st # P (S;W) 

The cut rule is applicable, we obtain the following proof object for the subcomputation lemma 
with an empty context: 

[P/Append](Q) (5.1) 

D 

This concludes the presentation of the subcomputation lemma. A direct consequence from this 
lemma is the equivalence theorem: In the next section we give a representation of this lemma 
in MLF: 

5.3    Equivalence Theorem 

The equivalence theorem states the equivalence of the natural and the operational semantics 
of our language T. The subcomputation theorem shows one direction of the theorem. In this 
last section we give a more elegant presentation of this one direction in MLF. We restate the 
theorem from section 2.1. 

Theorem 2.2 (Equivalence Theorem (one direction)) For K environment, E expression 
and W value: If (feval K E W) is inhabited, then also ((•; K), Ehdone, •) =^ (•, done, (•; W)) 

Proof: The proof of this theorem follows then quite easily: We know that the theorem is a direct 
consequence of the subcomputation theorem. We therefore extend the context T by the assump- 
tion that a subcomputation lemma is available. We prove the theorem under this assumption. 
Eventually, we cut this assumption out, using the original proof of the subcomputation theorem. 
The representation of the equivalence theorem is therefore: 

Subcomp £ VK : env. \/E : exp. VW : val. V£> : feval KEW. 

Vtf : envstack. VP : program. \/S : env. st (Hj,;K) (ev EkP) S^stHP (S;W) 
hE     Vp e \/K : env. ME : exp. W : val. feval K EW -»  

st (emptys;;Ä') (ev .E&done) empty 4> st emptys done (empty;W) 

As usual, we first decompose the form of the goal formula on the right. Three rule RV is applied 
three times, the result is the following sequent: 

Subcomp, K € env, E £ exp, W £ val 
hs     Vx £ feval K E W ->■  

st (emptys;;K) (ev £^&done) empty =>• st emptys done (empty;W) 

The implication in the goal formula can be resolved using the rule R —y. the resulting sequent 
has the following form: 



5.3.   EQUIVALENCE THEOREM 101 

Subcomp, K, E,W,De feval K E W 

t~S     V<i G st (emptys; ;K) (ev .E&done) empty =>• st emptys done (empty;W) 

The last thing to do is to apply the assumption Subcomp. This corresponds to ap- 
plying the subcomputation lemma. Seven application of the LV rule with the parameters 
K, E, W, emptys, done, empty, D yield the following result: 

Subcomp, K e env, E £ exp, W € val, D 6 feval K EW  

Ur G st (emptys; ;K) (ev F&done) empty 4> st emptys done (empty ;W) 

hs     Uj e st (emptys;;K) (ev E&done) empty 4* st emptys done (empty;W) 

id closes the branch. Obviously, everything works out under the assumption that the sub- 
computation lemma is proven. To obtain the actual proof, we have to cut this derivation with 
the deviation of the subcomputation lemma: The proof term of the subcomputation lemma has 
the form: [P/Append\(Q) (equation 5.1). Let R be the proof term of the equivalence theorem: 

Subcomp £ MK : env. V£ : exp. VW : val. MD : feval K E W.  

\/H : envstack. VP : program. VS : env. st (Hj,;K) (ev EkP) S 4> st H P (S$V) 
hs     R g VK : env. VE : exp. W : val. feval K E W -)•  

st (emptys;;K) (ev £"&;done) empty 4> st emptys done (empty;jy) 

The application of the cut rule yields the following proof term for the equivalence theorem: 

[[P/Append\(Q)/Subcomp](R) (5.2) 

D 

This completes the presentation of the language T and some of its meta theoretical results in 
MLF. 
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Chapter 6 

Conclusion 

In this thesis, we presented the meta logic MLF for the Horn fragment of LF. LF is well-suited 
to represent deductive systems. In section 2.1 we introduced as an example a toy programming 
language T. T and the notions of operational and natural semantics were then represented in 
LF. Note, that the result of this representation remained in the Horn fragment of LF. Therefore 
the Horn fragment of LF is already powerful enough to represent non-trivial problems. 

T showed also a further property of LF: Even meta theoretical results can be represented. 
The representation of the proof of the equivalence theorem showed how induction is transformed 
into LF objects and LF types. The implementation in Elf demonstrated, how the computational 
content of a proof can be accessed and used. 

Currently, meta theoretical results are proven with pencil and paper. The proof of the 
subcomputation lemma 2.1 represents a typical meta theoretical proof. MLF is designed to 
support this proof work. The inference rule system of MLF is based on the sequent calculus 
for intuitionistic logic equipped with rules, to incorporate declarations from LF signatures into 
the proof process. In addition, it offers a general recursion rule which can be used to provide 
induction hypothesis and a case distinction rule. The case distinction rule is used in the proof for 
the subcomputation lemma. MLF also contains a cut rule: the cut rule allows the combination 
of already proven results. We showed in the example that if an external lemma is needed for 
the proof of a theorem, the proof proceeds in three steps. First, the external lemma is proven. 
Second, the theorem must be derived under the additional assumption that the external lemma 
holds. Third, both derivations are combined with the cut rule. 

The purpose of MLF is it to keep a strict distinction between meta level and LF level. This 
is important, because MLF should be only an auxiliary device to reason about LF, but when 
the result is found, the objective is to transform everything back onto the LF level. The purity 
results guarantee, that there is a well-defined interface between MLF and LF. 

It is clear — from a logical point of view — that applications of the cut rule are unwanted. 
The purity result for example holds only for the cut-free case. The question to ask is, whether 
the cut rule application is necessary or if it can be eliminated. We have shown the local reduction 
theorem as a first step towards a general cut-elimination theorem. 

This thesis raises also a lot of questions for future research work. MLF has to be refined and 
implemented, and its theory has to be further developed: 
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104 CHAPTER 6.   CONCLUSION 

1. Even though this thesis is very theoretical in its content, its objective is of practical 
nature: to develop an interactive proof assistant component for Elf. So far MLF has not 
been implemented yet. It is planned to write a prototype based on MLF as an extension 
of Elf. 

2. From a theoretical point of view, the development of MLF is not yet finished: A major 
topic for future research will be the generalization of MLF as a meta logic for full LF. The 
inference rule system for MLF is very strict in the treatment of LF function types: No 
II-type is allowed to occur in the right hand side of a sequent. But this is too restrictive. 
Consider the following assumption: X G Ux : exp.exp. It is worthwhile to examine if and 
how MLF could be generalized so that the following axiom application is allowed. 

:id' 
X eUx : exp.exp hg X 6 Ux : exp.exp 

A very closely related question is, how higher order abstract syntax can be treated.   If 
MLF is extended to full LF, the question is already answered. 

3. Another very important research issue is if and how MLF proofs can be transformed into 
type families on the LF level. We proved purity results as a first step in this direction. 
We have seen in the example, that it is possible to represent the append lemma and the 
subcomputation lemma in LF. The problem is getting much more complicated if higher 
order abstract syntax is involved. 

4. Some more work has to be done concerning the meta theory of MLF. It would be very 
nice to have a cut/case-elimination result. We believe, to obtain such a result much more 
theoretical work is necessary. The connection between MLF and LF must be studied in 
more detail. 

5. The rule system of MLF contains the recursion rule. The recursion rule is defined with 
a side condition which enforces the proof term to be total. We did not give any details 
about this side condition. For a correct implementation of MLF, this judgement has to be 
defined appropriately. 

We believe that MLF is a first promising step towards a meta reasoning component for LF. 
More work is still to be done. 
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MLF rules 

A.l    Language of MLF 

Formulae: 
Goal formulae: 
Data formulae: 
Core formulae: 
Program Patterns: 
Programs: 

Kinds: 
Types: 
Atomic types: 
Goal types: 
Data types: 
Objects: 
Pure Objects: 
Object Patterns: 
Meta-context: 
Object-context: 
Signature: 

F 
G 
D 
C 

Q 
P 

K 
A 

AP 

AG 

AD 

M 
M 
N 
r 
A 
E 

Object variable names: x 
Meta Variable names: X 
Object constant names: c 
Type constant names: a 

MX : A.F | 3X : A.F | Fx A F2 \ Fx V F2 \ Fx -> F2 

VX : AD.G | 3X : AG.G \ d A G2 \ Gx V G2 \ D - 
VX : AG.D | 3X : AD.D \ Dx A D2 | Di V D2 \ G - 
VX : Ap.C | 3X : AP.C \ Cx A C2 \ d V C2 | d - 
(unit) | (pair X\ X2) 
X | (unit) | (rec X.P) 

AG_ 

AD 
AP 

(inl X) | (inr X) \ (inx Xi X2) \ N 
(fun X.P) | (pair Px P2) \ (inl P) 

\l\A 
G\l\ 

>D\1 
C2\l 

(inr P) | (inx Px P2) 
( case P of \ 

QW =» p(J) 

(let Pi be X in P2) | (app Px P2) \ M 

\ |   QW =» p(«) y 
type | ria; : AG- K 
a\(AM)\Ux :A1.A2 

a I (Ap M) 
AP 

Ap \Ux : AQ. AD 

P\x\c\\x:AG.M\(Ml M2) 
X_\x\c\\x:AG.M\{Ml M2) 
c\(N X) 
■\r,x eD 
■\A,x:AD 

■\H,c:AD\'H,aiK 
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A.2    Judgements for MLF 

l. hE r ctx 

2. r hE G goal r hE D data 

3. rhcPGG 

4. T hE A objctx 

5. T; A hs K kind 

6. r; A hs AP : K T;A\-^AG:K T; A hE AD : Ä' 

7. r; A hE M : AP r; A hE M : AG T; A hE M : AD 

8. Mi = M2 

9. APl = AP2 AGl = AG2 ADl = AD2 

10. Ki = K2 

A.2.1    Typing rules for meta context 

Judgment: 

Rules: 

hE T ctx 

hE r ctx    rhsD data 
ctxemp   — ctxcons 

hE • ctx hE T, X 6 D ctx 

A.2.2    Typing rules for goals 

Judgment: 

r hE G goal 

Rules: 

T; • hE AD : type    r, X € Aß hE G goal 
 goalforal 

rhEVX:AD.Ggoal 

r; • he AG : type    r,Ie^hsG goal 

T hE 3X : AG.G goal 

rhEGlgoal    rhEG2goal 

T hE Gi A G2 goal 

goalexists 

goaland 
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ThsGigoal    rhsG2goal 
 goalor 

r hE Gi V G2 goal 

rhsßdata   rhsGgoal 

r hE D -4 G goal 

goaltrue 

goalimp 

r FE 1 goal 

T; • hE K kind    T; • hE AG : K 

T (-£ AG goal 

A.2.3    Typing rules for data formulae 

Judgment: 

goaltype 

Rules: 

T\-ED data 

T; • hE AG : type    T,X eA^h^D data 
 dataforall 

T hE VX : AG.D data 

T; • F-E AD : type    r, X G ÄU hE -D data 

ThE3X : AD.Ddata 

T hE Di data    T hE D2 data 

dataexists 

T hE Di A D2 data 

r hE Dx data    T hE D2 data 

dataand 

T hE Di V D2 data 

T hE G goal    r hE D data 

dataor 

r hE G -»• D data 

 datatrue 
T hE 1 data 

T; • hE K kind    T; • hE AD : Ä" 

T hE AD data 

dataimp 

datatype 
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A.2.4    Typing rules for programs 

Judgment: 

Rules: 

r hE p e G 

\-zTi,X ec,v2 ctx 

r1,xec,r2\-sxec 
id 

hE T ctx 

r hE c e %s 
const     for c : AG defined in E 

hE T ctx 

r hs (unit) G 1 
Rl 

r ^s Pi G Gi r hs Pi G G2 

r hE (pair Pi P2) € Gi A G2 

RA 

r hE P e Gx 
RVi 

r hE P G G2 

r hE (inl P) G Gi V G2    T hE (inr P) G Gi V G2 

■RV2 

r,XG£>hsPGG 

r hE (fun X.P) G P -> G 

T,YeAD hE [r/X]P G \Y/X](G) 

ThE (funX.P) £VX:-AD.G 
RV 

rhEp'GAG  rhEPG[P'A](G) 

r FE (inx P' P)  G 3X : AG.G 
R3 

I\XGGFEPGG 

T hs (rec X.P) G C 
rec  with P I X 

TUX G Pi A P2,r2,X! G Pi,X2 G D2 hE P G G 

rl5 X G Pi A P2, T2 hE (case X of (pair Xx X2) => P) G G 
■LA 
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TuXe D1VD2,T2,X1 G Dx t-s Pi G G   TUX£ Di VD2,r2,X2 € £>2 HE Pi -6 G 

ri,X€DiV£>2,r2i-s 
case X of    (inl Xi) =^> Pi 

LV 

G(? (inr X2) ^P2 

Ti,xe Gx -»g,r2 h£ A 6 Gi   ri,A- g GX -»£>,r2,y G p hs p2 G G2 

r^IeG^^^hs (let (app X Pi) be Y in P2) eG2 

Tx,XeW:AG.D,T2\-^PxeÄ^   TUX eW : AG.D,T2,Z e[Pi/Y](D) h£ P2 e G 

Tx,XeW :AG.D,T2 hE (let (app X Pj) be Z in P2) e G 

Tx,X G 3Y : Aü.D,^,^! G Ä^,X2 G [Xi/Y](D) hsPeG 

LV 

ri,A"G3Y : AD.D,T2\-z (case X of (inx Xx X2) => P) eG 
•L3 

I^X G IIz : AG.AD,T2 hs M G AG 

I^X e na; : AG.AD,T2,Y G {M/z}type(AD) hE P G G 

Tx,XeIlx: AG.AD,T2 hE [X M/y](P) G G 
Ln 

r^XGn^iAG.Ac^hsZGAc 
rijelb: AG.AD,r2,y G {£/z}tyPe(AD) hE P G G 

ri.x e n« : AG.AD,T2 hE [XZ/y](P) G G 
Lnv 

r hE M G AG r^elM/^pe^bPeG 

r ,hE[cAf/y](P)€G 

r r-£ Z G AG T,Ye{Z/x}type{AD)\-^PeG 
1 

rhE[cz/y](P)GG 

LIIS  where c:Ux : AG.AD G S 

LIIEV   where c : ILc : AG.AD G S 

for all i < n 
hE [p/x] (r) ctx  r hE P G äG"   AW , [eW] (r;) hE p(«) G [e«] (<?') 

■case 
/ case P of 

[J7*](r)hE 

\ 

^f'-i'^MlpW) 
G [P/X](G) 

V|  ^^...y^^pM)/ 
where following side conditions hold: 

i. indE,r(x, AG') = {(A(
1
), e(x))..(A(n), e(»))} 

2. There is a 77 s.t. [77] (AG') = AG, [r?](r') = T and [77] (G') = G 

T!hEPGG    ri,XGG,r2hEPGG 

rlf [P/x](r2) h£ [P/X](P') G [P/JC](GO 
cut 
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A.2.5    Typing rules for object context 

Judgment: 

r l-s A objctx 

Rules: 

objctxemp 
T f-£ • objctx 

r HE A objctx    T; A HE AD : type 
 objctxcons 

r HE A, x : Ap> objctx 

A.2.6    Typing rules for kinds 

Judgment: 

r; A HE K kind 

Rules: 

 kindtype 
T; A HE type kind 

T; A HE AG : type    T;A,x: AG Hs K kind 

T; A HE na; : AG. K kind 

Note, that every AQ is also an Ap. 

A.2.7    Typing rules for atomic types 

Judgment: 

r;AHsAp:K 

Rules: 

S(a) = Ä" 

kindpi 

r;Ahso:if 

r;AHs AP :Ux : AG. K    r;AHEM:AG 

T;A\-x(APM):{M/x}kind(K) 

T; A HE AP :K    K = K'    T; A HE K' : kind 

T; A HE AP : K' 

typeatomconst 

j 

typeatomapp 

typeatomequiv 
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A.2.8    Typing rules for goal types 

Judgment: 

F;A\-EAa:K 

Rules: 

No new rules 

A.2.9    Typing rules for data types 

Judgment: 

r-A\-x AD:K 

Rules: 

T; A hs AG : type    T;A,x: AG hE AD : type 
 typedatapi 

T; A hg Ux : AQ. AD : type 

A.2.10    Typing rules for objects of atomic type 

Judgment: 

r; A hs M : AP 

Rules: 

no rules 

A.2.11    Typing rules for objects of goal type 

Judgment: 

r; A t-E M : AG 

Rules: 
Impure MLF: 

rhsPeI^ 
T,   » ■      ...    objgoalprgl 
T;A\-EP:AG 

Pure MLF: 

 objgoalprgP 
r;AhEX:AG 
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A.2.12    Typing rules for objects of data type 

Judgment: 

APPENDIX A.  MLF RULES 

Rules: 

T;A\-xM:AD 

A(x) = AD 

T; A hE x : AD 

objdatasigma 

S(c) = AD 

T; A hE c : AD 

objdataconst 

T; A hE Mx : Ilx : AG. AD    V; A hs M2 : AG 

r;AhE(M1M2):AD 

objdataapp 

r; A, x : AG hE M : AD 

T; A hE Xx : AG. M :Ux: AG. AD 

objdatapi 

r;AhEM:AD    AD = AD'    T; A hE AD' : type 
 objdataequiv 

T; A hE M : AD' 

no rules for typing programs 

A.2.13    Congruence relation for kinds 

Judgment: 

Rules: 

same as in LF [Pfe92, HHP93]. 

A.2.14    Congruence relation for atomic types 

Judgment: 

Apx = Ap2 
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Rules: 

transitivity and congruence as in LF. 

A.2.15    Congruence relation for goal types 

Judgment: 

AGI = AQ2 

Rules: 

similar to Subsection A.2.14. 

A.2.16    Congruence relation for data types 

Judgment: 

A-Dl = AD2 

Rules: 

transitivity and congruence rules as in LF. 

A.2.17    Congruence relation for objects 

Judgment: 

Mi = M2 

Rules: 

objbeta 
(\x : AG. M)N = {N/x}obiect(M) 

 objeta 
(Ax : AQ. (M a?)) = M 

Impure MLF: 

 objprgl 
P = P 

Pure MLF: 
objprgP 

X = X 

transitivity and congruence as in LF. 
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Appendix B 

Purity proofs 

Lemma 4.1 Let M' be a pure object, A' a pure type, and © a strictly pure substitution, i.e. 
0{X) = Y or e(X) = M for all X G dom{&). Then Q(M') is pure and Q(A') is pure. 

Proof: by mutual induction over the structure of A', M'. 

Case: M' = X. If G(X) = Y then 

[©]object(M') = [6]object(20 = [e]program(X) = Y 

which is pure. Note, that X = Y is possible. In the other case, if ©(X) = M, then 

[e]object(M') = [e]object(20 = M 

is pure. 

Case: M' = x. 

[0]object(M') = [e]object(*) = * 

is pure. 

Case: M' = c. 
[©]object(M') = [e]object(c) = C 

is pure. 

Case: M' = Xx : AG'. M". 

[©]object(M') = [Q]ohiect(Xx : AQ'. M") = Xx : [®]type(AG'). [0]object(M") 

Induction hypothesis gives us that [0]type(^G') and [0]obiect{M") are pure.   Therefore 
[©]object(M') is pure. 

Case: M' = (M[ Mfi. 

[©]object(M') = [e]object(Mf M'2) = ([G]object(M0 [©]object(M^)) 

Induction hypothesis gives us [@]object(-W{), [6]object(-^2) are Pure- Therefore [0]object(M') 
is pure. 

115 
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Case: A' = a: 
[G]type(A') = [e]tyPe(o) = a 

is pure. 

Case: A' = Ux : A[. A'2. 

[©]type(A') = [ewns: A;. A'2) = n*: [e]type(A'1). [e]type(A'2) 

Induction hypothesis gives us [©KypetAi), [0]tyPe(A2) are pure.   Therefore [0]tyPe(A') is 
pure. 

Case: A'= (A[ M{). 

[©]type(A') = [0]type(A'1 M[) = ([e]type(Ai)  [©] object (M{)) 

Induction hypothesis gives us [©]tyPe(A'1)) [0]object(-Wi) are pure. Therefore [0]object(-M') 
is pure. 

D 

Lemma 4.2 Let 0 be a substitution and [0](M) be a pure object. Then M is pure. 

Proof: Assume the contrary. M is not pure implies [0](M) not pure: There is a subobject Mi 
of the form P, and P/Ia variable name. 

[e](Mx) = [0](P) = [0KF1 + [9](Y) 

Since [0](Mi) is a subobject of [0](M), [0](M) cannot be pure. D 

Lemma 4.3 Let 0 be a substitution and [0](A) 6e a pure fype.  Then A is pure. 

Proof: Assume the contrary. A is not pure implies [0](A) not pure: There is a syntactical 
subtype of the form (Ai M), with M not pure. By lemma 4.2 we obtain [0](M) not pure. 
Therefore [0](Ai M) is not pure, and since this is a syntactical subtype of [0](A), it cannot be 
pure. D 

Lemma 4.4 Let 0 be substitution, M object and [&}0bject(M) pure and A be a type and 
[®] type (A) pure.  Then Q\pree(M) must be strict and @\Free(A) ?s strict. 

Proof: By lemma 4.2 we have M is pure. Proof by mutual induction over the structure of M 
is pure and A is pure. 

Case: M = X_ then 
[0]object(M) = [0]object(2Ü = M' 

where M' G {Y_,c,Xx : AG". M",(M[' M%)} which must be the domain of 0, therefore 
0|{X} is strictly pure. 
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Case: M = x. 

[0]object(M) = x 

0 doesn't do anything in this case, therefore, ©I0 is strictly pure. 

Case: M = c. 

[0]object(M) = C 

Therefore 0|o is strictly pure. 

Case: M = Xx : AG. M\. 

[0]object(M) = [0]object(Aa; : AG. Mi) = Xx : [0]type(AG). [0]object(Mi) 

AQ   pure   type   and   [0]type(^G)   Pure   gives   us   &\Free(Aa)   ls   strict.        Mi   pure 
type  and   [0]object(Mi)   pure  gives  us  0|Free(Mi)  is  strict.     Therefore  ®\Free(M)   = 

®\Free(AG)L>Free(Mi) = ®\Free(AG) U @lFree(M2) Is Strict. 

Case: M = (Mi M2). 

[0]object(M) = [e]object(Afi M2) = ([0]object(Mi) [0]object(M2)) 

Mi   pure   type   and   [0]object(Mi)   pure   gives   us   0|Free(Mi)   is   strict.       M2   pure 
type  and   [0]object(M2)   pure  gives  us  0|Free(M2)   

is  strict.     Therefore  @\Free(M)   = 

0|Free(M1)uFree(M2) = ®|Free(Mi) U 0|Free(M2) 
ls Strict. 

Case: A = a: 

[0]object(A) = [0]object(ß) = « 

©|0 is strictly pure. 

Case: A = Ux : A\. A2. 

[0]type(A) - [0]type(na; : AL A2) = UX : [0]type(Al). [0]type(A2) 

Ai pure type and [0]type(Ai) pure gives us ®\Free(Ai) is strict.    A2 pure type and 

[0]type(A2) pure gives us ©\Free(A2) is strict. Therefore @\Free(A) = (S>\Free(A1)uFree(A2) = 

01 FreeiAi) U 01 Free(A2) 
is strict • 

Case: A=(A1M1). 

[0]type(A) = [0]tyPe(A1 My) = ([0]type(Al) [0]object(M1)) 

Ai   pure  type  and   [0]type(Ai)   pure  gives  us  Q\Free(Ai)   1S  strict.      Mi   pure  type 
and   [0]object(Mi)   pure   gives   us   Q\Free(Mi)   is   strict.        Therefore   Q\Free(A)    = 

0|Free(Ai)uFree(Mi) = 0|.Free(j4i) U 0|Free(Mi) is strict. 

D 

Lemma 4.5 Let P' be a pure program and 0 a strictly pure substitution. Then 0(P') is pure. 
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Proof: by induction over the structure of P'. 

Case: P' = X. If [e]program(X) = Y then 

L"Jprogram 1/    J = [ÖJprogramV^ J = * 

which is pure, else if [ö]program(X) = M' then 

[G]prograrn(p') = [e]program(M') = [e]object(Af) 

which is pure because of lemma 4.1 [Q]object(M') is pure. Else 

L"J program!/    J = L"J program I, -"• J == -"• 

which is pure by definition. 

Case: P' = (unit) is pure by definition. 

Case: P' = (rec X.P"). 

[ejprogramlP') = [e]program(rec X.P") = (rec X.[0]program(P")) 

is pure because [0]program(P") is pure by induction hypothesis. 

Case: P' = (fun X.P") analog. 

Case: P' = (pair P{ F"2) analog. 

Case: P' = (inl P") analog. 

Case: P' = (inr P") analog. 

Case: P' = (inx P{ Pß analog. 

Case: P' = (app P{ PQ analog. 

Case: P' = (let P{ be X in P^). 

[e]program(P,) = [©] program (let P[ be X in f2) = (let [G]program(P1') be 7 in [G, y/X]program(P^)) 

Because of induction hypothesis [0]prOgram(Pi) is pure, and since 0, Y/X is also strict, 
[0, Y/X]pTOgram(P2) is pure by induction hypothesis. 

Case: P' = M>. 

[0]program(P') = [0]program(M') = [0]object(M') 

which is pure because [0]object(M') is pure by induction hypothesis. 
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Case: P' = 

( case P of \ 

L"Jprogram!/   J — L"] program I, 

/ case P of \ 
QW =» p(i) 

^ I   Q(») =»► p(») y 
/" case [ö]program(P) of \ 

[*l]program(g(1)) => [0 O *1]program(p(1)) 

V   I      [*l]Program(<2(rl)) =» [0 O tf„]pr0gram(P(n))   j 

is pure, because [0]program(P) is pure, 0ofj. is strictly pure — this is because ^k is 
only a variable renaming substitution — and [0 o \Pfc]Program(P^) are pure for k < n by 
induction hypothesis. 

D 

Lemma 4.6 Let 0 be a substitution and [0](P) be a pure. Then P is pure. 

Proof: Assume the contrary. P is not pure implies [0](P) not pure: There is a syntactical 
subprogram of the form M, with M not pure. By lemma 4.2 we obtain [0](M) not pure. 
Therefore [0](M) is not pure, and since this is a syntactical subprogram of [0](P), it cannot be 
pure. D 

Lemma 4.7 Let G' be a pure formula and 0 a strictly pure substitution. Then 0(G') is pure. 

Proof: by induction over the structure of G'. 

Case: G' = VX : A'.G": 

[0]formula(G') = [0]formula(VX : A'.G") = MY : [0]type(A)[0 O (Y/X)){ormula(G") 

is pure because [0]type(A) is pure due to lemma 4.1, Qo(Y/X) is a strictly pure substitution 
and [0 o (Y/X)]fOTmui&(G") is pure by induction hypothesis. 

Case: G' = 3X: A'.G": analog 

Case: G' = G[ A G'2: 

[0]formula(Gr') = [0]formula(G'l A G'2) = [Q^oTmul^G^) A [0]formula(G'2) 

is pure because [©Iformula^i)) [0]fOrmuia(G2) are pure by induction hypothesis. 

Case: G' = G[ V G"2: analog. 
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Case: G' = G[ ->■ G'2: analog. 

Case: G' = 1 is pure by definition. 

Case: G' = Ä7: 
[e]formuia(G") = [e]formula(A') = [e]form„ia(A') 

is pure because [0]formuia(-<4') is pure by lemma 4.1. 

D 

Lemma 4.8 Let 0 be a substitution and [0](G) be a pure formula.  Then G is pure. 

Proof: Assume the contrary. G is not pure implies [0](G) not pure: There is a syntactical 
subprogram of G of the form A, with A not pure. By lemma 4.3 we obtain [0](A) not pure. 
Therefore [0](A) is not pure, and since this is a syntactical subprogram of [0](G), it cannot be 
pure. D 

Lemma 4.9 Let 0 be substitution, G formula and [@]formula{G) pure. Then 0|.Free(G) iS strict. 

Proof: By lemma 4.8 we have G is pure. Proof by mutual induction over the structure of G is 
pure. 

Case: G = VX:A1.Gi: 

[0]formula(G) = [0]formula(VX : AX .Gi) = W : [0]type(A1) [0 O (y/X)]formula(G1) 

Ai pure type and [0]type(Ai) pure gives us ©l^ree^) 1S strict by lemma 4.4. Gi pure 
formula, therefore [y/X]formuia(Gi) pure formula. [0 o (y/X)]formuia(Gi) pure implies 
[0]formula([y/^]formula(Gi)) gives us 0|Free([y/X]formula(Gi)) is strict by induction hypoth- 

esis. Therefore 0|Free(G) = 0|Free(yli)uFree(Gi)\{.A:} = ©iFree(Ai) U 0|Free(Gi)\{X} = 
©lFree(^1) U ©^ree^/X^^^) * Strict. 

Case: G = 3X : A1.G1: analog 

Case: G = Gj AG2: 

[0]formula(G) =. [0]fOrmula(Gi A G2) = [0]formula(Gi) A [0]formula(G2) 

G\ pure formula and [0]type(Gi) pure gives us 0|Free(Gi) ls strict by induction hypothesis. 
G2 pure formula and [0]type(G2) pure gives us ©|Free(G2) 

1S strict by induction hypothesis. 
Therefore 0|Free(G) = 0|Free(Gi)uFree(G2) = ©lFree(G1) U 0|Free(G2) IS strict. 

Case: G = G\ V G2: analog 

Case: G = G\ -¥ G2: analog 

Case: G = 1 is pure by definition. 
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Case: G = 1: 

[0]formula(G) = [0]formula(A) = [0]type(A) 

A pure type and [ö]type(A) pure gives us @\Free(A) is strict by lemma 4.4.   Therefore 
©iFree(G) = ®\Free(A) IS Strict. 

D 

Lemma 4.10 Let V be a pure context and 0 a strictly pure substitution. Then 0(r') is pure. 

Proof: by induction over the structure of T. 

Case: T' = • is pure by definition 

Case: V = T", X £ D' If X £ dom(Q), we get 

[0]context(r') = [0]context(r", X € D') = [0]Context(r") 

is pure because of induction hypothesis. If X £ dom(Q), we get 

[0]co„text(r') - [0]context(r",X 6 £>') = [0]context(r"), X € [0]formula(JD') 

which is pure because [0]Context(r") because of induction hypothesis and [0]fOrmula(-D'J is 
pure because of lemma 4.7. 

D 

Lemma 4.11 Let 0 be a substitution and [0](r) be a pure context. Then T is pure. 

Proof: Assume the contrary. T is not pure implies [0](r) not pure: There is a syntactical 
subcontext of T of the form Ti,X e D, with D not pure. By lemma 4.8 we obtain [©](£>) not 
pure. Therefore [0](ri,X e D) is not pure, and since this is a syntactical subcontext of [0](r), 
cannot be pure. D 

Theorem 4.12 Every typing rule in MLF without cut is purity preserving. That is, when the 
premisses are pure (all participating objects, types, programs, formulae, and contexts are pure) 
the conclusion will be pure, too. 

Proof: Case: id preserves purity: Under the assumption that T\,X £ C, T^ is pure, it follows 
trivially that X is pure and C is pure. 

Case: const preserves purity because T is assumed to be pure. 

Case: Rl: analog. 

Case: RA: T pure, P\,P2 pure, and G\,G2 pure implies (pair Px P2), Gi A G2 pure. 

Case: RVi: analog 

Case: RvV analog 
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Case: R —>■: analog 

Case: RV: Under the assumption that T is pure, and AD is pure, and because of lemma 4.6 
and lemma 4.8 we can conclude that P and G are pure, and therefore (fun X.P) and 
VX : An-G are pure. 

Case: R3: Under the assumption that T is pure, P,P' are pure, [P'/X](G) is pure and AQ 

pure, we obtain by lemma 4.8 that G is pure. Consequently (inx P' P) and 3X : AQ.G 

are pure. 

Case: rec: analog 

Case: LA: analog 

Case: LV: analog 

Case: L —>■: analog 

Case: LV: analog 

Case: L3: analog 

Case: LII: Assume Fi,X £Ux : AQ-AD, T2 is pure, M is pure and AQ is pure. From the second 
premiss we can assume additionally that P' is pure. Hence, since \X_ M/E] is a strictly 
pure substitution, it follows from lemma 4.5 that [X M/E](P') is pure. 

Case: LIIE: analog 

Case: case': We can assume T to be pure, therefore [P/X] is strictly pure and by lemma 4.10 we 
obtain [P/X](T) is pure. From lemma 4.7 we obtain that [P/X](G) is pure. By assumption 
AQ is pure, therefore B is a pure type. [T]](AG') is pure by the side condition of the rule, 
therefore v\Free(AG') 1S strictly pure by lemma 4.4. Since n = rj\Free^Aa^, n is a strictly 
pure substitution. Consequently for all i: [rj](P^) is pure, and therefore the proof term is 
a pure program. 

D 

Theorem 4.13 (Generalized Purity Preservation) Let T be a pure context, G a pure for- 
mula, P a program, and V a derivation ofV::T\-^P£Gin the inference system of pure MLF 
without Cut. Then P is pure. 

Proof: By induction over the derivation V: 

Case: id preserves purity: Under the assumption that Ti,X £ C, T2 is pure, it follows trivially 
that X is pure and C is pure. 

Case: const preserves purity because T is assumed to be pure. 

Case: Rl: analog. 
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Case: RA: T pure and G\, G2 pure implies that Pi, P2 pure, which implies (pair Pi P2), GiAG2 

pure. 

Case: RVi: analog 

Case: RV2: analog 

Case: R —K T pure and D,G pure, therefore T,X £ D pure. Induction hypothesis, gives as a 
pure P, and therefore (fun X.P) is pure. 

Case: RV: Y pure and AD, G pure, therefore T,Y e AD pure. Since \Y/X](G) is pure, induction 
hypothesis yields a pure program \Y/X](P). Therefore (fun X.P) is pure. 

Case: R3': V pure, Aa, G pure. Y as the result of the first premiss is pure. Since [Y/X] is 
strict, [Y/X](G) is pure, which yields a pure P. Therefore (inx Y P) is pure. 

Case: R3": T pure, AQ, G pure. M as the result of the first premiss is pure. Since [M/X] is 
strict, [M/X](G) is pure, which yields a pure P. Therefore (inx M P) is pure. 

Case: rec: analog to R —>• 

Case: LA: Ti,X G DiAD2,T2 is pure, therefore Yi,X e DiAD2,T2,Xi € Di,X2 € D2 is pure. 
G is pure by assumption, therefore P is pure, which yields (case X of (pair X\ X2) =S> P) 
to be pure. 

Case: LV: analog to LA. 

Case: L —y analog to LA. 

Case: LV: T\,X 6 VY : Ag.D,T2 is pure, AQ is pure. Y\ as a result of the first premiss is 
pure. Since [Vi/V] is strict, and D is pure, [Yi/Y](D) is pure. Induction hypothesis on 
the second premiss yields P2 is pure, and therefore (let (app X Y\) be Z in P2) is pure. 

Case: LV": Fi,! 6 VF : AQ.D,Y2 is pure, AQ is pure. M as a result of the first premiss is 
pure. Since [M/Y] is strict, and D is pure, [M/Y](D) is pure. Induction hypothesis on 
the second premiss yields P2 is pure, and therefore (let (app X M) be Y in P2) is pure. 

Case: L3: analog to LA. 

Case: LIT: Ti,X £ Ux : AG-AD,T2 is pure by assumption, therefore M is pure. Ila; : AQ-AD 

is pure, M is pure, therefore {M/x}trpe{AD) is pure, therefore the context for the second 
premiss is pure, and the induction hypothesis yields P pure. Since \X_ M/Y] is strict, 
LTM/Y](P) is pure. 

Case: LIIE: analog 

Case: case': [P/X](T) is pure. If X € Free(T) then T is pure by lemma 4.6, else T is pure. If 
X G Free(G) then G is pure by lemma 4.8, else G is pure. AG is pure and AQ is pure, 
and therefore M(AG') is pure. By lemma 4.4 we obtain, that 77 = ri\pree/Aai\ is strict. We 
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have [77] (I1') is pure (because T is pure) and because of lemma 4.11 we obtain V is pure. 
The same argument holds for [rj](G'), which is pure since G is pure. Because of 4.8 we 
know that G' is pure, too. Because of construction ©W is pure for all i. Thus, ©W(r') 
is pure. AM is pure, too, because of construction. And finally ©W(G') is pure because G 
is pure. Therefore we can apply the induction hypothesis and obtain that the pW's are 
pure for all i. Therefore the [rj\(P^) are pure, and hence the proof term 

/ case P of 

ciX± (i) y(l) 

\   I     Cn A.1     ,..A, '(») 

M(p(1)) 

- w(pW) y 

is a pure program. 

D 



Appendix C 

Local reductions 

Lemma 4.15 (Substitution Effects) Let D be a data formula, P a program, K a kind, M an 
object and Ap an atomic type, AG a goal type and AD a data type. Let a be a strict substitution, 
Free{a) fl sup(T) = 0 and A be a context with \- A ctx which introduces the new variables used 
in a. Let T' = A, [<r](r) and A' = [a](A). Then for all T meta context and A object context: 

r; A he K kind => r';A'hE [*](#) Jbind 
T; A hE Ap : K =£> r';A'hEM(Ap)[o-](K) 
r;AhEiG:K =*> r';A'hE[or](AG)M(K) 
T;A\-xAD:K => T';A'H[a](AD)[a](K) 
T; A hE M : AP => r';A'hE[a](M)[(r](Ap) 
r; A hE M : AG ^ r';A'hE[c7](M)[a](AG) 
T; A hE M : AD =$> r';A'hE[(7](M)[cr](AD) 

r hE D data =$■ r'hE [c](D) data 
r hE p e G => r'f-£M(P)GM(G) 

hE r ctx =*> hE r' ctx 

Proof: by mutual induction on the participating derivations: Note, T>[, V2 always refer to the 
derivations we obtain by applying induction hypothesis to the derivation of the premiss of the 
rules. 

Cases for T; A hE K kind: 

Case: kindpi 

V[ V>2 

T; A' hE [a](AG) : type       T'; A', x : [cr](AG) hE [a](K) kind 

r';A'hE [a](Jlx : AG. K) kind 

other cases: analog or trivial 

kindpi 

125 
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Cases for T; A hE AP : K: 

Case: typeatomapp: 

V V 
r'; A' hE [a] (AP) : Ux : [a] (AG). [a] (K)       T';A' hE [a] (M) : [a] (AG) 
 typeatomapp 

r';A'hE (M(A0) M(M)) : [<x]({M/z}(JO) 

Case: typeatomequiv: 

V V' 
V; A' hE [a](Ap) : [a](K)      [a](üQ = [a](K')      T'; A' hE [a]V') : kind 
 typeatomequiv 

r';A'hx[a](AP):[a](K') 

Cases for T; A hE AG : K: 

All cases: same as T; A hE Ap : if 

Cases for T; A l-E AD : K: 

Case: typedatapi: 

V V' 
r'; A' hE [a](AG) : type       T'; A', x : [<r](AG) hE [a](AD) : type 

 typedatapi 
T';A'\-^[a](Ux:AG.AD):type 

other cases: analog or trivial or as T; A hE Ap : K 

Cases for T; A hE M : AP,T; A hE M : AG and T; A hE M : AD: 

Case: objdatapi 

V[ 
r';A',x:[a](AG)hx[a](M):[a](AD) 
 objdatapi 
r'; A' hE [a](Xx : AG. M) : [<r](ILc : AG. AD) 

Case: objdataapp 

V' V 
V; A' hE Mi : Ux : [a](AG). [a](AD)       V; A' HE [a](M2) : M(AG) 
 objdataapp 

r';A,h-EM(M1M2):[a](AD) 

Case: objdataequiv 

r'; A' hE [a](M) : [a](AD)      [a](AD) = [a](AD')      T'; A' hE [a]\AD') : type 
 objdataequiv 

T>;A'Hl<r](M):[a](AD>) 
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Case: objgoalprgl 
V' 

T'^[a](P)e[a](AG) 
objgoalprgl 

T';A>^[a](P):[a](AG 

other cases: analog or trivial 

Cases for T \-£ D data: 

Case: dataforall 

V[   V'2 2 

T', • hs [a] (AG) : type       T',X e [a] {AG) hE [a] (D) data 

rhE [ff](VX:AG.D)data 

Case: dataand 
v[ v2 

r hE [<r](Di) data       T hE [<r](D2) data 
 dataand 

dataforall 

rhs [a](JD1AD2)data 

Case: datatype 

r'; ■ HE [a](K) kind 
V 

T';-^[a](AD): W\{K) 

T' hE [a](AD) data 

other cases: analog or trivial 

Cases for hE r ctx: 

Case: ctxcons 

hE r' ctx 
V>2 

r'hs [a] (D) data 
- ctxcons 

datatype 

h-Er',XG[a](D)ctx 

other cases: analog or trivial 

Cases for f hE P £ G:    straightforward 

D 

Lemma 4.14 (Context extension) Let Ti,^ be contexts, s.t.  hE Ti,^ ctx. Let D be for- 
mula, s.t. T\ hE D data, then hE Ti,X £ D,V2 ctx 

Proof: by structural induction over the form of T2: 

Case: T2 = •: We have hE Ti ctx. Since £ :: Y\ hE D data we have hE Ti,X £ D ctx 
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Case: T2 = T'2,X G D: By inversion we obtain  hE ri,r'2 ctx.  By induction hypothesis, we 
obtain hE Ti, X G D, T2 ctx and by application of the context formation rule, we obtain 
\-zTuX eD,T2ctx. 

Lemma 4.16 (Weakening) Let V :: rj,r2l-EP G G, S :: r\ hs D' data and X' $ 
dom(T1,T2), then V[TX \JX G D'] :: TUX' G D',V2 hs F G G Wiere X' is new meta vari- 
able and D' is a data formula, depending only on variables in Ti. 

Proof: by induction over the derivation V: 

Case: id 

hsr^r'^XGC^actx 
=$►    KsI^X'Gl^r^XGC^ctx 
=* T1,x'eD',V1,xeC,T2\-Ex eC 

by assumption 
bylemma 4.14 and by assumption 

Apply id 

alternative analog 

Case: Rl: follows directly from lemma 4.14 and assumption 

Case: const: follows directly from lemma 4.14 and assumption 

Case: RA 

ri,r2r-EPieGi 
=» r1,x'eD',r2\-KP1eG1 

r1,r2hsp2GG2 

=* r1,x'eD',r2\-KP2£G2 
=>   TuX'eD',r2\-^ (pair Pi P2) G Gi A G2 

by assumption 
by hyp. 

by assumption 
by hyp. 

Apply RA 

Case: RVi 

ri,r2hE PeG1 

=* TuX'eD'^hxPeG! 
=>   r1,X'G£>',r2l-s(inlP)GGiVG2 

by assumption 
by hyp. 

Apply RVi 

Case: RV2 

ri,r2hE PGG2 

^ r1,x
,GJD',r2hsPGG2 

=*   r1,X'GP>',r2hE(inlP)GGiVG2 

by assumption 
by hyp. 

Apply RV2 
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Ti,r2,xeD\-zPeG 
=»   TuX'eD',T2,XeD\-j:PeG 
=>• ri, x' e D', r2 hE (fun i.P)efl4G 

by assumption 
by hyp. 

Apply R -> 

Case: RV 

ri,r2ly e AD t-s [Y/x]p_e [Y/X](G) 
=* ri,x' G D',r2, Y e AD hE [yyxjp G [r/x](G) 
=► rx, x' e D', r2 hs (fun y.pj G vx : AD.G 

by assumption 
by hyp. 

Apply RV 

Case: R3 

ri,r2hEp'GAG _ 
=$► Tux'eD',v2^P' eAG 

r1,r2hEPe[P'/A-](G) 
=> ri, x> G D', r2 hE p G [P'/x] (G) 
=>   ri, X' G £>', T2 hE (inx P' P)  G 3X : AG.G 

by assumption 
by hyp. 

by assumption 
by hyp. 

Apply R3 

Case: rec 

TuT^xeChzPeC 
=* r1,x'Gß',r2,XGChsPGC 
=►   fi.X'G D', r2hE (rec X.P)G  G 

by assumption 
by hyp. 

Apply rec 

Case: LA 

TuXe D1 A D2,r2,r3)Xi G Di,X2 £D2hEPeG 
=}►   YUX G Di A D2,r2,X' G D',r3,Xi G Di,X2 G D2 hE P G G 
=>   ri.Xefli Afl2,r2,re ö', r3 f-S (case X of (pair Xx X2) 

by assumption 
by hyp. 

P)eG    Apply LA 

r!,r2,x G Di AD2lr3,A-i e DUX2 G D2 hE p G G 
=*   rx,X' G D',r2,X G D1 A D2.r3.Xi G Di,X2 G D2 hE P G G 
=>   Ti, X' G D', r2, X G Di A D2, T3 hE (case X of (pair Xx X2) 

by assumption 
by hyp. 

P)eG    Apply LA 

Case: LV 
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Ti, X G D\ V D2, r2, V3, X\ G D\ hE P\ G G by assumption 
=>   T1,X€D1VD2,r2,X'eD',r3,X1eD1\-xP1eG byhyp. 
I\, X G .Di V D2, r2, T3, X2 G £>2 l-£ F2 G G by assumption 
=*   r1,X€DiVD2,r2,A"/GD/

)r3,X2Gl>2l-Ei'2eG byhyp. 

=► raedvß, r2, x' G D', r3 hE f fase x of  Jinl %\ * % ) eG Apply LV 
V   I llnr A2) => p2   / 

Ti,T2,X G -Di V£>2,r3,Xi G -Di hs Pi G G by assumption 
=»   r1,X

,GD',r2,XGL'iVD2,r3,X1GJDiF-siDi GG byhyp. 
Ti, r2, X G -Di V Z>2, Tß, X2 G -D2 hs -P2 G G by assumption 
=> r^x' eD',r2,x eDlvD2,T3,x2eD2\-Ep2eG byhyP. 

=>   TUX'€ D>, r2, IGAV D2, r3 hE  f ^aSe X °f    Jinl *> ^ 5 VG G Apply LV V  I (mr X2) => P2   / 

Case: L -> 

Ti,X G Gi —)• D, T2,T3 l-£ P G Gi by assumption 
=» ri.A-eGi-^D.ra.A-'eD'.rgi-EPeGi byhyP. 
ri, X G Gi —>■ D, T2, T3, Y G D hE P' G G2 by assumption 
=* r1,iGGi^Ar2,i'eß',r3,yeDhEP'GG2 byhyp. 
=»   r1,XGGi-^D,r2,X'GJD/,r3hs(let(appXP)bey inP') GG2      Apply L-^ 

I^, T2, X G Gi -» D, T3 hE P G Gi by assumption 
=»   r^X'Gß'.ra^GGi^D.TshsPGGi byhyp. 
Ti, F2, X G Gi —>■ D, ]?3, y G -D hE P' G G2 by assumption 
=► r1,x'GP'',r2,XGGi^ß,r3,y GL»hEp'GG2 byhyp. 
=*   rx, X' G £>', r2, X G Gi -»• D, T3 hE (let (app IPJbeY in P') G G2      Apply L -> 

Case: LV 

Ti,X G Vy : AQ.D, r2, T3 hE Pi G AG by assumption 
=►   Ti,XGVy :AG.JD,r2,X/GD',r3hEPiGÄG" byhyp. 
Ti, X G Vy : AG.D, T2, T3, Z G [Pi/Y](D) hE P2 G G by assumption 
=*   r1,XGVy:AG.JD,r2,X'GJD',r3,ZG[Pi/y](D)hEP2GG byhyp. 
=>•   Ti, X G Vy : AG.P>, T2, X' G £>', T3 hE (let (app X Pi) be Z in P2) G G     Apply LV 

Ti, r2, X G Vy : AQ-D, T3 \-£ Pi G AG by assumption 
=*► ri,x'GD',r2,XGvy:AG.p»,r3HEPiGÄ^ byhyP. 
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TUT2, XeW: AG.D, T3, Z G [Pi/Y](D) hE P2 G G by assumption 
=»   r1,X'eD',r2,XeW:AG.D,r3,Ze[P1/Y]{D)\-xP2(EG byhyp. 
=^>   r1,X'GJD',r2,X6Vy:AG.D,r3hs (let(appXF1)beZinP2)€G     Apply LV 

Case: L3 

ruXe3Y: AD.D, T2, T3,Xx G AD,X2 G [XX/Y]{D) hE P G G by assumption 
=»   r1,Xe3F:AD.JD,r2,X'eJD')r3,X1eAö,X2G[X1/y](D)hEPeG       byhyp. 
=>   TUX e3Y : AD.D, T2, X' G D1, r3 H (case X of (inx Xj X2) => P) G G Apply L3 

ri, r2, X G 3y : AD.D, r3, Xx G AD, X2 G [Jfi/r|(D) KE P G G by assumption 
=* r1,x'eD',r2,xe3Y:AD.D,r3,x1eAD,x2e[x1/Y](D)\-xPeG     byhyP. 
=^>   rx, X' G D', r2, X G 3y : AD.L>, r3 hE (case X of (inx Xx X2) ^P)eG Apply L3 

Case: Ln 

r1;X G Ux : AG.AD,T2,T3 hE M G AG by assumption 
by hyp. 

by assumption 
rx,X G Ilx:AG.AD,r2,X' G D',Y3)Y £ {M/x}type(AD) hE P G G by hyp. 
I\,X G na; : AG.AD,T2,X' G D',r3 hs [(XM)/Y](P) G G Apply Ln 

=>   Ti,XeUx: AG.AD, V2, X' G D', T3 hE M G AG 

rx,X G nz : AG.AD,r2,r3,y G {M/:c}type(AD) l-E P G G 

Ti, r2,X G IIz : AG.AD)T3 hE M G AG by assumption 
by hyp. 

by assumption 
ri,X' G £>', r2,X G Ux : AG.AD, T3, Y G {M/a;}type(AD) hE P G G by hyp. 
rx,X' G D',T2,X G nx : AG.AD,T3 hE [(X M)/y](P) G G Apply Ln 

=>   Ti,X'e D',r2,X G na; : AG.AD,V3 hy M e AG 

rx,r2,X G Ux : AG.AD,r3,y G {M/z}type(AD) hE P G G 

Case: LnV analog 

Case: LnE 

ri,r2hEMGAG _ _ 
=> r1,x

/GD/,r2hEMG AG 

rlvr2,y G {M/x}type(AD) hE P e G 
=>   rlt X' G D', T2, YJ_[M/x}type(AD) hE P G G 
ri,x' G £>',r2 hE [(cM)/y](p) G G 

by assumption 
by hyp. 

by assumption 
by hyp. 

Apply LnE 
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Case: LIIEV 

Gase: case 

=* rux'eD',v2\-PeAG 
Ti h D' formula 
A«,eW(ri) h eW(D') formula 
For alH < n 
AW,eW(ri,r2) HE P

W
 G GW(G) 

=» AW^W^I),^ G ew^o.ew^) hE P
W
 G e«(G) 

=» A«,QM(TI,x' e Df,r2) \-E pw e e«(G) 
/ case P of \ 

by assumption 
by hyp. 

by assumption 
by lemma 3.32 (3.8,3.9), and lemma 4.15 

=* ri,x'ei>',r2i-E 
Cly1

(1)..^^M(pW) 

Vi C^Y^.I^MOPW); 

GG 

by assumption 
by hyp. 

by def. subst. 

Apply case 

D 

Lemma 4.17 (Contraction:) LetD,D' be data formulae, K a kind, Ap an atomic type, AQ 

a goal type, AD a data type, M an object and P a program. Then the following holds: For all 
meta contexts T\, r2, T3, and for all object context A: Let T = Ti, U £ D', r2, V G D', T^, and 
r' = TUU G D', r2, [U/V](V3) and let A' = [U/V](A) and a = [U/V]. Then we have: 

rjAhjUL kind => r';A'hE [^(K) fond 
T; Ahsip: K =^ r^A'l-EMCAp):^]^) 
T;A\-EAG:K =^ V;b!\-v[<T}{AD):[<r}{K) 
T; AhsAD: K => r';A'hE[a](AG):[a](K) 
r; A hs M :Ap =» r';A'hE[a](M):[cr](Ap) 
V- A hE M : AD =^ r';A'hE[a](M):[Cr](AD) 
r; A hE M : AG =$► r';A'l-E[a](M):M(AG) 

n-sZ) data =^ T' hE [a](D) data 
r hE p e G =>• T'^[a)(P)e[a](G) 

hE r ctx =*> hE r' ctx 

Proof: by mutual induction on the participating derivations: Note, V[, T>'2 always refer to the 
derivations we obtain by applying induction hypothesis to the derivation of the premiss of the 
rules. 

Cases for T; A hE K kind: same as in proof for lemma 4.15. 

Cases for T; A hE Ap : K: same as in proof for lemma 4.15. 
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Cases for T; A hE AQ ■ K: same as in proof for lemma 4.15. 

Cases for T; A r-E AD '■ K: same as in proof for lemma 4.15. 

Cases for I1; A hE M : Ap: same as in proof for lemma 4.15. 

Cases for T; A hg M : AQ' same as in proof for lemma 4.15. 

Cases for I1; A hE M : AD', same as in proof for lemma 4.15. 

Cases for r hE D data: same as in proof for lemma 4.15. 

Cases for  hE T ctx: same as in proof for lemma 4.15. 

Cases for r hE P G G: 

Case: id 

hs rx, x e c, r2, u e D', r3, v e D', r4 ctx 

=». ri,xGc,r2,c/G D',r3,a(r4)hsie M(C) 
=   r1)iec,r2)c/Gfl'1r3,(r(r4)biec 

Assumption 
by hyp. 

Apply id 
trivial 

he Ti, tf e £>', r2, x G c, r3, v G D', r4 ctx 
=* r-sri.^eß'.ra.DGCra.MCr^ctx 
=> rx,J7G D',r2,xGc,r3,a(r4)hEie [a](c) 

Assumption 
by hyp. 

Apply id 
trivial 

hE rx, u G D', r2, v G £>', r3, x G C, r4 ctx 
HE r1;[/ G ö',r2,[a](r3),z G M(C),M(r4) ctx 
=   T1}ueD',r2,M(r3),xe M(C),M(r4) hsie M(C) 

Assumption 
Ih 

Apply id 

Case: Rl, const: trivial 

Case: RA 

TUUe D',T2,V e ]y,r3\-x PI. eG! 
=>   TuUeD1, r2, [a](r3) hE [a]^) G M(GX) 
ri, t/ G D',r2,y G D',r3 hE p2 G G2 

=>   r1,UeD',r2,[a](T3)\-s[a](P2)e[a}(G2) 
=*   ri, C/ G £>', T2, [a](r3) hs [a] (pair Pi P2) G [a](Gi A G2) 

by assumption 
by hyp. 

by assumption 
by hyp. 

Apply RA 

Case: RVi 

r^u e D',r2,v e D',r3\-x pe d 
=> ■ rx, c/ G D',r2, M(r3) hE [a](p) G M(GI) 
=> rx, c/ G £>',r2, M(r3) hE [a](im p) G [CJ}{G1 VG2) 

by assumption 
by hyp. 

Apply RVi 
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Case: RV2 

vuue D',r2,v e D',r3 hE p G G2 

=» ruueD',r2,[a](r3) hE ,[a](P) G,[a](G2) 
=» rx, c/ e D',r2, M(r3) hE , [a](im p) G, M(GX V G2) 

by assumption 
by hyp. 

Apply RV2 

Case: R 

ruu e D',r2,v e D\r3,x e D\-X p e G 
=» rx.i/ G D',r2,[or](r3),x e D hE M(P) G kite) 
=*   ri, C/ G £>', r2, [a](r3) hs [<r](f un X.P) G [a](I> -+ G) 

by assumption 
by hyp. 

Apply R -> 

Case: RV 

ri, u G £>',r2, v G D',r3,y G Ä5"hE [y/x]p G [F/X](G) by assumption 
ruue D'^wm^YeWjAp)^ [*W/x](P)) G M([y/x](G))  by hyP. 
rl5 t/ G D',r2, M(r3),y G [<T](AD) hE [y/x]([<r](p)) G [y/x](M(G))    trivial 
TUU€ D',T2, [a](r3) hE [ff](funX.P) G M(VX : AD.G) Apply RV, by def. subst. 

Case: R3 

T1,UeD',T2,V€D',r3\-vP,eAa    
=* r1; J7 G D', r2, M(r3) hE [a](P) G M(AG) 
ri,J7 G ß',r2,ve D',r3 f-E PG [P'/*](G) 
=* rx, c/ G £>',r2, M(r3) hE M(P) G M([P'/*](G)) 
=  rx, c/ G D',r2, M(r3) hE M(p) G [M(P')/X](M<G)) 
=►   r^eD', r2, [<r](r3) hE [a](inx P' P)  G [<T](3X : AG.G) 

by assumption 
by hyp. 

by assumption 
by hyp. 

trivial 
Apply R3 

Case: rec 

rx,uG D>,v2,VeD',r3,xec\-xPeG 
=>   TuUe D',T2, [a](T3),X G [a](C) hE [a](P) G [a](C) 
=>   TUU e D',T2,[a](T3)\-x[cr](recX.P) e  M(C) 

by assumption 
by hyp. 

Apply rec, by def. subst. 

Case: LA 

TUX £DiA D2, T2, U G D', T3, V G D', r4, Xi G -DX, *2 € D2 ^E P e G by assumption 
=*   Tx,X G £>x AD2,T2,U G £>',r3, [a](r4),Xi G M(A),X2 G M(£2) 

hM(P)e[a](G) . by hyp. 
=* rx,x G Di Ap2,r2,c/ G D',r3, M(r4), *i G DUX2 G r>2 

^s M(P) G M(G) trivial 
=> ri,XG£>iAi)2,r2,£/Gir,r3,[<T](r4) 

hE [CT](case X of (pair Xx X2) => P) G [<r](G) Apply LA 



135 

TuUe D',T2,X e Dx AD2,T3,V G D',T4,X1 G DUX2 e^bfeGby assumption 
=> r1,ueD',r2,xeD1AD2,T3,[a](T4),x1eD1,x2eD2 

HEM(P)GM(G) by hyp. 

hE [a] (case X of (pair Xi X2) =* P) e M(G) Apply LA 

I\, t/ G D', r2, V G D', r3,IGDIA D2, r4, Xx G Du X2 G D2 hE P G G by assumption 
=» ri, u e D', r2, [a] (r3, ledA^r^^e |>] (DO , x2 e [a] (D2) 

HS H(P) G M(G) by hyp. 
=» Ti, c/ G D',r2, M(r3), x G M(DO A [<T](D2), [a](r4) 

hE [a] (case X of (pair Xx X2) =* P) G [<x](G) Apply LA 
=►   r1,C/GD',r2,[a](r3),XG[a](D1AD2),M(r4) 

hs [CT](case X of (pair Xx X2) => P) <= [a](G) trivial 

Case: LV 

ri, X G Di V D2, r2, *7 G D', r3, V G D', r4, Xx G DX hE Px G G by assumption 
=*   I\,X G Di VD2,r2,C/ G D'.ra.M^),^ G M(D0 hE [^(Px) G [a](G) by hyp. 
=    Ti, X G Di V D2, r2, U G D', T3, [a](r4), Xx G Dx hE [^(P) G [a](G)        trivial 
Ti, X G Dx V D2, r2, U G D', T3, V G D', T4,X2 G D2 hE P2 G G by assumption 
=►   r!,X G Dx VD2,r2,P G D',r3,[a](r4),X2 G [a](D2) hE [a](P2) G M(G) by hyp. 
=    rX) X G Dx V D2, r2, C/ G D', r3, M(r4), X2 G D2 hE [a](P2) G [CT](G)        trivial 
=* r1,XGD1vD2,r2,c/GD',r3,M(r4) 

.     r -. I case X of    (inl Xi) =s> Pi \     r ,,„. .     ,    . 
h2M(l (inrX^P^hM^ ApplyLV 

ri, U G D', T2, X G Di V D2, r3, y G D', r4, Xx G DJ hE Px G G by assumption 
=»   rx, [7 G D', T2, X G Di V D2, T3, [a](r4), Xx G Dx hE [a](P) G M(G)      by hyp. 
rx, U G D', r2, X G Di V D2, r3, V G D', r4, X2 G D2 hE P2 G G by assumption 
=>   r1,C/GD',r2,XGD1VD2,r3,[a](r4),X2GD2hE[a](P2)G[a](G)      by hyp. 
=► ri.c/GD'.r^XGDiVD^r^taKr,) 

.     r , /  case X of    (inl Xi) => Px \      r ,,   . 
hsM(l (inrX2Up2      

G^ ApplyLV 

rx, C/ G D', T2, y G D', T3, X G DI V D2, r4, Xx G DX FE PX G G by assumption 
=*   Tx, [7 G D',r2, [a](r3,X G Dx V D2,r4),X! G [<r](£>i) hE [cr](P!) G H(G) by hyp. 
=   ri,c/ G D',r2, M(r3),x G M(DX V D2), [<7](r4),Xi e M(DX) 

l-E W(Pi) G M(G) trivial 
Ti, C7 G D', T2, F G D', r3, X G Di V D2, T4, X2 G D2 hE P2 G G by assumption 
=*   r!,C7 G D',r2,[a](r3,X G D! VD2,r4),X2 G M(D2) hE M(P2) G [a](G) by hyp. 
=   rltu G D',r2, M(r3),x G M(DI V D2), M(r4),x2 G M(D2) 
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H [*m) e M(G) 
TUU£ D', r2, [<T](T3),X G M(i>i) v M(D2), [<r](r4) 

,     r -, ( case X of    (inl X{) => P. \     r ,,_,. 
hsM(   | (inrX2U^JeM(G) 

)',r2)[a](r3),x G M(öivö2),[a](r4) 

hsM(   case X of    (J^£) ^ ) e M(G) 

v     I v  ■*</ ^    / 

.     r , / case X of    (inl Xi) =>• Pi \      r 

trivial 

Apply LV 

trivial 

Cases: other left rules follow the same pattern. 

Case: case: F = T1}U £ D',T2,V e D',V3 Note that the declaration X eA~^ must be in 
ri,r2orr3. 

[P/X]{T!, U G £>', T2, V G D', r3) ctx by assumption 
=*   [F/XKrO, [/ G [P/X](ß'), [P/X](r2), 7 e [P/X](IT), [P/X](T3)) ctx by def. subst. 
=► [P/x](ri), c/ G [P/X](D'), [P/*](r2), M([p/x](r3))) ctx by hyP. 
ri, U G £>', r2, V G £>', r3 hs F G AG   by assumption 
=* rx, u G £>', r2) M (r3) FS M (P) G M (A^) by hyP. 
=    [a] (ruUe D', T2, r3) \-E [a] (P) G [a] {AG) by def. subst. 

Therefore [a]{AG) = [a o rj](AG'), [a](T) = [a o rj]{r'), [a](G) = [a o r,](G').  Define 
T}' = a o 77. Therefore all derivations for 

A«,eW(r')r-2p
(i) ee(0((2') 

are still premisses. The application of the rule yields: 

M(P)/X]([a](ThUeD\T2,T3)) 
I case [cr](P) of 

f~s 

\ 
dyfl.i.U^^pO) 

G [M(P)A](M(G)) 

V I   cnY}n)...YLn^[aoV](pW) ) 

which is equivalent to 

[a]([P/X](ThUeD'T2,T3)) 
( case P of 

1-sW 

\ 

Cly1
(1)...i^^[f7](p(1)) 

V| Cny/"\..y£UM(p(")); 

G M([P/X](G)) 

D 
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Lemma 4.19 (Substitution Lemma:) Let D be data formulae, K a kind, Ap an atomic 
type, AQ goal type, AD, A data types, M object and P a program. For c : A £ E the following 
holds: For all meta contexts Fi,r2, and for all object context A: Let Y = TX,Z £ A, T2, and 
T' = TU [c/Z](T2) and let A' = [c/Z]{A) and a = [c/Z]. Then we have: 

T;A\-xK kind =$► r';A'hE [<T](ür) jbind 
T; A hE AP : K => r';A'hE[cr](Ap):[c7](K) 
r;AhEAG:/f => r';A'hs[c7](AG):[(7](K) 
r; A hs AD : K => T';A'^[a](AD):[a](K) 
T- A hE M : Ap =*> r';A'hE[(7](M):[cT](Ap) 
T;A\-EM:AG =^ r';A'hE[a](M):[(7](AG) 
r;AhsM:AD =^ r';A'hEM(M):[c7](AD) 

r hE D data =» r'hE[<r](L>)data 
r hE P £ G =>■ r'hE[a](P)£[a](G) 

hE T ctx => hE r' cte 

Proof: 

Cases for T; Ah^if kind: same as in proof for lemma 4.15. 

Cases for T; A hE Ap : K: same as in proof for lemma 4.15. 

Cases for T; A hE AQ ■ K: same as in proof for lemma 4.15. 

Cases for T; A hE AD ■ K: same as in proof for lemma 4.15. 

Cases for T; A hE M : Ap: same as in proof for lemma 4.15. 

Cases for T; A hE M : AQ: same as in proof for lemma 4.15. 

Cases for T; A hE M : AD: same as in proof for lemma 4.15. 

Cases for r hE D data: same as in proof for lemma 4.15. 

Cases for  l-E V ctx: same as in proof for lemma 4.15. 

Cases for T hE P £ G: 

Case: All axioms and right rules are straightforward 

Case: LA 

r\, z £ A, r2, x £ DX A D2, r3, xx e DU X2 e D2 hE p e G 
=*   Tua(T2),Xea{D1AD2),a(T3),X1£a(D1)}X2ea(D2) 

\-E <?(P) e a{G) 
=    Tua{V2),X £ *(£>!) A ^(Da),^),*! € °{Dl),X2 £ a(G2) 

^s <T{P) £ a{G) 

Ass. 

I.H. 

Def. subst 
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=J-   Tua(T2),Xea(D1)Aa(D2),a(T3) 
hE (case X of (pair Xx X2) => a(P)) G a(G) 

=    T1,a(r2),Xea{D1AD2),<T(T3) 
hE ff(casel of (pair Xi X2) =>• P) G o(G) 

rux e Di A D2,r2,z eÄ^Xi e DUX2 e D2\-X p e G 
=>   TuXe D1AD2,T2,a(T3),X1 G a(D1),X2 G a(D2) hE a(P) G a(G) 
=*   Ti,Xe Di A D2,T2,a(T3),Xl G Di,X2 G D2 hs a(P) G a{G) 
=>   r^XeDiAD^r^aiTs) 

hE (case X of (pair Xi X2) == 
ri,XGDiAD2)r2l(T(r3) 
hE cr(case X of (pair Xi X2) 

a(P)) G «7(G) 

» P) G a(G) 

Case: LV 

ri, z G A, r2, x G Di v D2, r3) xx G Di hE Pi G G 
=►   ri,a(r2),X G cr(Dx VD2),a(r3),Xi G a(Dx) FE a(Px) G a(G) 
=    ri,o(r2),X G (7(A) Vc7(D2),a(F3),X1 G a(Dj) hE a(Pi) G a(G) 
Ti, ^ G A, T2, X G Di V D2, r3, X2 G D2 hE P2 G G 
=* ri,c7(r2),XGa(D1vD2),(7(r3),x2GCT(D2)hS(7(p2) eo-(G) 
=    ri,a(r2),X G C7(DX) Va(D2),a(r3),X2 G a(D2) hE a(P2) G a(G) 
=>   T1,a(T2),Xea(D1)ya(D2),a(T3) 

( case X of    (inl Xx) ^ a(Px) 
X 

S  ^ | (inr X2) => a(P2) 
=    r1,a(r2),XGa(DiVD2),a(r3) 

/ case X of    (inl Xi) =^ Pi 
| (inr X2) => P2 

\~Y, O 

ea(G) 

ea(G) 

Ti, X G D: V D2, r2, Z G A, T3, X1 G Dj hE Px G G 
=*   Ti,X G Di VD2,r2,a(r3),Xi G a(Di) hE a(P) G a(G) 
=*   Ti,X G Di VD2,r2,o(r3),Xi G Di hE a(P) G a(G) 
ri,XGDiVD2,r2,ZGA,r3,X2GD2hEP2GG 
=*   Ti,X G Di VD2,r2,a(r3),X2 G CT(D2) hE CT(P2) G a(G) 
=>   Ti,X G Di VD2,r2,a(r3),X2 G D2 FE a(P2) G a(G) 
=> ri,XGDiVD2,r2,a(r3) 

/ case X of    (inl Xi) => <r(Pi) N 

E  1, | (inr X2) =* C7(P2) 

=  r1,XGD1vD2,r2,a(r3) 
/ case X of    (inl Xi) =>• Pi 

| (inr X2) =» P2 
l"E 0- 

e*(G) 

Ga(G) 

Case: L 

ri,ZGA,r2,XGGi^D,r3hEPiGGi 
=*   Ti, a(r2),X G a(Gi -+ D),a(T3) hE a(P) G <r((?i) 
=    ri,a(r2),X G a(Gi) -> a(D),<r(r3) Hs a(Px) G a(Gi) 

Apply LA 

Def. subst 

I.H. 
trivial 

Apply LA 

Def. subst 

Ass. 
I.H. 

Def. subst 
Ass. 
I.H. 

Def. subst 

Apply LV 

Def. Subst 

I.H. 
trivial 

I.H. 
trivial 

Apply LV 

Def. subst 

Ass. 
I.H. 

Def. subst 
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ri, z e Ä, r2> x e d -> D, r3, Y G D hE p2 e G2 
=>   r1,a(r2),X£a(G1-+D),a(r3),Ye<T(D)\-xCT(P2)ea{G2) I.H. 
=    Tua(T2),Xea(Gl)^a(D),cr(T3),Yea{D)}-Ea(P2)ea(G2)       Def. subst 
=> r1,<T{T2),xe<T(G1)-+a{D),v(r3) 

hE (let (app X CT(PI)) be Y in a{P2)) G <r(G2) Apply L -4 

hE <r(let. (app X Pi) be Y in P2) G ^ (G2) Def. subst 

T1,XeG1^D,T2,Z£Ä,r3\-jiP1eGi Ass. 
=*   T1,XeG1^D,T3,a(T3)\-^a(P1)ea(G1) I.H. 
=   ri,A:€Gi-^i>,r2,ff(r3)i-Eff(Pi)eGi triv. 
ri, x e Gi -► -D, r2, z G A, r3, y G D hE p2 G G2 ASS. 
=*   r1)XGG1^D,r2,a(r3))yea(D)F-sCr(P2)Ga(G2) I.H. 
=    r1,XGGi^D,r2,a(r3),yeJDFsa(P2)GG2 triv. 

hE (let (app X a (Pi)) be y in a(P2)) G G2 Apply L -> 

hE ff(let (app X Pi) be Y in P2) G G2 Def. subst 

Case: LV 

Ti,ZeA,r2,XeW:AG.D,T3\-xP1eAG                Ass. 
=>   r1,a(r2),XGa(Vy:AG.D),a(r3)hEa(P1)Ga(4G)  I.H. 
=    Tua{T2),Xe Vy : a(AG).a(D),a(T3) hE ^P) G a(AG) triv. 
ri, Z G A, T2, X G Vy : AG.D, r3, Z' G [Pi/y](P) ^P2eG Ass. 
.=► ri,ff(r2),X G a(W : AG.D),a{T3),Z' G a([Pi/Y](£>)) hE a(P2) G a(G) I.H. 
=    T1,a(T2),XeW:a(AG).a(D),a(T3),Z'e[a(P1)/Y](a(D)) 

H53 or(P2) € ff(G) triv. 
=» r1)a(r2),XGVy:a(AG).a(r;),CT(r3) 

hE (let (app X a(Pi)) be Z' in a{P2)) G <r(G) Apply LV 
=►   r1)a(r2),lGa(Vy:ylG.i)),(7(r3) 

hE <r(let (app X Px) be Z' in P2) G <r(G) Def. subst 

TuXeVY :AG.D,r2,ZGÄ,r3hEP1GÄ^   Ass. 
=*   r^XGVy :AG.P,r2,(r(r3)hE(7(P1)GaAG I.H. 
=    T1,XeW:AG.D,T2,<T(r3)\-x<T(Pl)eAG triv. 
ri,X G Vy : AG.P,r2,Z G A,T3,Z> G [Pi/y](P) \-KP2£G Ass. 
=* r1,XGVy:AG.p,r2,a(r3),z'G(7([p1/y](p))hECr(p2)Ga(G) I.H. 
=    r1,XGVy:AG.P,r2,a(r3),Z'G[a(P1)/y](a(P))l-E 

<r(Pi) G a(G) Def. subst. 
=    ruXeW:Ao.D,T2,v(r3),Z'e[a(P1)/Y)(D) 

l-E CT(P2) G CT(G) triv. 
=*   TuXeW :AG.D,T2,a(T3) 

hE (let (app X a (Pi)) be Z' in a(P2)) G a(G) Apply LV 
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=   ruxeW:AG.D,r2,a(r3) 
hE a(let (app X Pi) be Z' in P2) G a(G) Def. subst 

Case: L3 

YUZ G Ä,Y2,Xe 3Y : AD.D,r3,Xi G A~B,X2 ejX^Y^D) hE P G G Ass. 
=>   r1)CT(r2),X G a(3F : AD.D),a(r3),X! G aAD,X2 G <7([Ayy](P)) 

HE ff(P) G (7(G)   I.H. 
=    r1)C7(r2),X G 3F : a(AD).a(D),a(r3),X1 G a(AD),X2 G [a(*i)/Y](<7(£>)) 

HE CT(P) G CT(G)   Def. subst. 
=    rx,a(r2),X G 3F : a(AD).a(D),a(Y3),X1 G a(Aß),X2 G [J^/y^P)) 

HE ff(P) G CT(G) triv. 
=>   ri,a(r2),A-e3y:a(Ax,).(7(D),a(r3) 

hE (case X of (inx Xx X2) =* a{P)) G a(G) Apply L3 
=    Yua(Y2),X e3Y :a(AD).a(D),a(Y3) 

hE cr(case X of (inx Xx X2) =>- P) G <r(G) Def. Subst 

ri,xe 3y: AD.p,r2,z G A,r3,^ G AEIX2 G [*I/Y](I>) hE p e G Ass. 
=5>   TuXe3Y: AD.JD,r2,tr(r3),X1 G aAD,X2 G a^/y^)) 

l-E ff(P) e a(G)   I.H. 
=    TuXe3Y: AD.D,Y2,o{Y3),Xl G <r(AD),X2 G [a(Xi)/y]((r(I>)) 

HE a{P) G a(G)   Def. subst. 
=    YuXe3Y: AD.D,Y2lo{Y3),X1 G AD)X2 G [Xi/Y](D) 

HE (7(P) G (7(G) triv. 
=► ri,xe3y:AD.£)>r2)(T(r3) 

hE (case X of (inx Xx X2) =$► CT(P)) G CT(G) Apply L3 
=   r1,ie3y:AZ).Ar2,(r(r3) 

hE a(case X of (inx X1 X2) =» P) G CT(G) Def. subst 

Case: LIT 

rXl Z G A, T2, L G Ila: : AG.AD,Y3 hE M G AG         Ass. 
=»   Yi,a(Y2),L G ana; : AG.AD,a(Y3) hE aM G oAG  I.H. 
=    rx,<7_(r2),L G ajllx : AG.AD),a{Y3) hE g(M) G a(AG) Def; subst. 
ri, Z G Ä, T2, L G ILc:AG.AD,r3,ffe ((ILr : Ag.Ajj) M) hE P> G G   Ass. 
=►   ri, a(r2), i G (us : a(AG).(7(AD)), a(r3), P G ((ILc : a(AG).(7(AD)) cr(M)) 

HE CT(P') G CT(G)    I.H.,Def. subst 
=»   ri, a(r2), L G affla: : AG.AD), a(Y3)[(La(M))/E]{a{P')) G <r(G)        Apply LII 
=    r!,(7(r2),L G ff(na; : AG.AD), a{Y3)a([{LM)/E]{P')) G a(G) Def subst. 

alternative analog. 

Case: HIV analog 
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TuLeUx: AG.AD, T2, Z G A, r3 hE M G AG Ass. 
I.H., Def. subst, triv. 

fi, L G Tlx : AG.AD, T2, ZeÄ,T3,Ee ((Tta : AG.AD) M) hE P' G G Ass. 
rx, L G Ux : AG.AD, r2, a{T3) hE <r(M) G AG 

T^LeUx: AG.AD, T2, a(r3), E G {(Ilx : AG.AD) a{M)) 
hE <r(P') G <r(G) 
TuLenx-.AG.Ap^^iTs) 
\-xa([(LM)/E](P'))ea(G) 

I.H., Def. subst, triv. 

Apply LII, Def. subst. 

Case: LIIE 

ruzeA,r2\-xMeAG 
=* r1,tT(r2)hsg(M)GAG 

fi, Z G A, T2, E G ((IIz : AG.AD) M) hE P' G G 

Ass. 
I.H., Def. subst., triv. 

Ass. 
=> Tua(T2),E G ((ID; : AG.AD) a(M)) hE CT(P') G a(G) I.H., Def. subst., triv. 
=>   rx, a(r2) hE [(£g(M])/^((r(^) G CT(G) Apply LEE, Def. subst. 
=    Tua{T2) hE a([(iM)/£](P')) G a(G) 

Case: LIIEV analog 

Case: case Note, that X G B occurs in Ti or T2: X e B occurs left of Z G A: 

^[P/X]^),Z e A,[P/X](T2) ctx 
hE r1? [P/X](ri), a([P/X](T2)) ctx 
r!,ZGA,r2hEPGß   
=*   r1,q(r2)hE0-(P)Ga(P) 
=   ff(ri,r2)i-E a(P)ea(B) 

by assumption 
by hyp. 

by assumption 
by hyp. 

by def. subst. 

Therefore [a](B) = [a o V](B>), [a](T) = [a o rj\(T'), [a](G) = [a o r,](G'). 
Define rf = a o t). Therefore all derivations for 

AW eW(r') \-xP^eeW(G') 

are still premisses. The application of the rule yields: 

[M(P)/*KM(ri,r2)) 

1-5 

/ 

V 

case [a](P) of     ClX1
(1)...x(!1U[ao??](p(1))   \ 

cnx\n)...xtil^\oorj\(P^) 

G M(P)/X]([cr](G)) 

which is equivalent to 

[a)([P/X](ThT2)) 

I-EW 

/ case P of     Cl XpL.X^ ^ foKPW)   \ 

c„X1
(n)...X^^[r?](p(")) y 

G M([P/X](G)) 
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D 

Theorem 4.21 (Local reductions in MLF:) IfV \\Y\V K G C and £ :: YUZ G C,T2 h 
P G G then there is a derivation T', s.t. T v.Yu [a](T2) h [a](F) G [CT](G) with a = [K/Z]. 

Proof: 

Case: Meta variables: If K is a meta variable, the four cases may occur: 

Case: Let V be an id instantiation 

and £ a derivation for 

V = id 
ri,xec,r2i-sxec 

£ 
TUXec,r2,Yec,r3i-E PeG 

T 
V®£=  T,,Xe C,r2, [X/Y](T3) hE [X/Y](P) G [X/Y](G) 

But this derivation can be accomplished by contraction lemma 4.17. 
Case: Let V be a derivation for 

V 
vl i-E P e c 

and £ be a derivation for 

£= id 
ri,xec,r2i-siec 

v§§£= ri,[p/x](r2)hEP€C 

but this follows directly from the weakening lemma 4.16. 

Case: Let V be an const instantiation, c : A a signature entry in S, 

J) = — const 
I\ hE c € A 

and £ a derivation for 
_ S 

ruxeA,r2\-sPeG 

T 
V®£ =   r!,[c/X](r2) hE [c/X](P) G [c/X](G) 

but by the substitution lemma 4.19 we can derive the same formula from £ without 
using cut. 
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Case: Let V be a derivation of 
V 

Ti hE p e c 

and £ an const instantiation, c : A a signature entry in S, 

ri,X€Cf,r2l-33c€A 
• const 

T _ 
x>(g)£= r!,[c/A:](r2)i-sceA 

but this follows directly from the weakening lemma 4.16. 

Case: fun -programs 

Case: Universal quantification:Let V be a derivation for 

        Vl 

I\, Y € AP hs [Y/X]Q € P7X](C) 
X» = RV 

ri l-E (fwiX.Q)€VX :AP.C 

and 

£1   £2 
TUF£VX:AP.C,T2\-V P € AP        TUF £ VX : AP.C,T2,E € [P/X](C) hE f" e G 

f = LV 
Ti, F e VX : ylp.G, T2 hE (let (app FP)be£ in P') € G 

F £ Free(A)    since Free(Ap) C sup(ri) and F <£ Ti (C.l) 

F g Free(C)    since for Y new, Free([F/X](C)) \ {y} C sup(Ti)       (C.2) 

Applying the cut rule to the derivations V and £ we obtain 

T 
V<$)£=   Tu [(j](r2) hE [a] (let (app F P) be E in P') G M(G) 

where we use a as an abbreviation for the substitution [(fun X.Q)/F] 

7- 

Vte>£x =   Tu [a](T2) hE [a](P) e MÄF 

Because of (C.l) this is equivalent to 

Vfo£x=   ru[a](T2)\-E[a](P)eAp 

V6d£2 = 
7- 

TU [a](T2),E e [<r]([P/X](C)) hE [o](P>) e [a](G) 
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Since in ^ [a]([P/X](C)) = [[(r]{P)/Y]{[a]([Y/X](C))) and (C.2) this equation sim- 
plifies to 

V ® S2 =        Tu [a] (r2), E G [[a] (P) /X] (C) hE [a] (P') G [a] (G) 

To cut J7! with T>i we have to weaken V\ first: Dj = [Ti VM^)]^ which exists by 
lemma 4.16: 

Tu M(r2), y G AP hE [Yy*]Q G [Y/X](C) 

7- 
v[ g) ji = rx, M(r3) hs [M(p)/y](.[y/x3](Q)) G [M(P)/y]([y/x](c)) 

which simplifies to 

*>i ® *i = ri, M(r2) hE [[*](P)/X](Q) G [M(P)/X](C) 

ri,M(ra) hE [[M(P)/X](Q)/£](M(P')) e [[M(P)/x](Q)/£](M(G)) 
and trivially: 

^2 00^3 = 

Case: Implication 

7- 
ri,M(r2) hE [[M(P)/X](Q)/JB](H(P')) G [O](G) 

2>I 
ri,l6dhEQ€C2 

X> = R-» 
ri hs (funX.Q)eCi ->C2 

£1 £2 
ri.FeCi-^Ca.rahuPeCi      ri.FeCi ->.c2,r2,£ec2hsp'eG 

£ = : L-> 
Ti, F G Ci -» C2,r2 hs (let (app FP)be£ in P') e G 

X>(g)£ = Tx, [a](r2) hE [a](let (app F P) be E in P') G [a](G) 

with [a] = [(fun X.Q)/P]. Apply Cut to V and Zx\ 

7- 
x>(g)£i = rx,M(r2) hE M(P) G M(d) 

which is equivalent to 
T 

rx,M(r2)hE[a](P)GCx 
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Apply Cut to V and S\: 

?2 
V®€2 =   Tu [a](T2),E e M(C2) hE [a](F') G [cr](G) 

which is equivalent to 

T2 

ri,M(r2),f;eC2i-E[(7](F)e[ör](G) 

Weaken Di to 2>'x as Difri VM(r2)]: 

V[ 
r1,[a](T2),xeCi\-xQec2 

Apply Cut to T\ and DJ: 

^3 

•^ ®2>i = rl5 M(r2) hE [M(p)/x](Q) e [M(P)/x](c2) 

which is equivalent to 

?z 
r1,[a](r2)hs[[a](p)/x](Q)ec2 

Apply Cut to Tz and .F2: 

?A 
^3(g)^2 =   rx,M(r2) hE [[[a](P)/X](Q)/E)([a](P')) e [M(P)/X](Q)/E}([a}(G)) 

which is equivalent to 

TA 

Ti,M(r2) hE [[[a)(P)/X](Q)/E]([a](P')) e [a](G) 

Case: inx- programs 

Ti h2 p' eAP      rihBPe [P7*](C) 
 R3 

P = Ti hs (inx P' P) € 3X : AP.C 

£1 
TUX e 3Y : AP.C,Ta,Xi € AP,X2 € [Xi/y](C) hE Q € G 
 L3 

£ = TUX € 3F : AP.C,r2 hE (case X of (inxXi X2) => Q) € G 

J7 

£>(g)£ =   ri, [a](r2) hE [ff](case X of (inx X1 X2) ^ Q) £ [a]{G) 
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with [a] = [(inxPf P)/X]. 

v^e1= r1; M(r2),X! G [a](Ä7),x2 G [<r]([*i/y](C)) hE [a](Q) G M(G) 

which is trivially equivalent to 

_ ^ 
x»(g)^ = ruMOty,^ e (AP),x2 G [XX/Y]{C) hs [<r](Q) e M(G) 

As above we have to weaken V\ and V2. 

V' V' 
Ti, [a] (r2) hE P' e (IF)       Ti, [a] (T2) hje [F'/y] (C) 

We can cut X>^ and ^i to obtain: 

2>i(g).Fi = r1;[a](r2),x2 G [P'Ai]([ii/^](C)) HE [P7*i](M(Q)) e [P7*I](M(G)) 

Trivially this is equivalent to 

7- 
Tu [a](T2),X2 G [P'/Y](C) HE [P'/X1]([a](Q)) G [<r](G) 

Finally the application of cut to T>2 and T2 yields: 

^(g)^2 =   TU [a](r2) hE [P/Xd([PyXi](M(Q))) G [P/X3](M(G)) 

which is again equivalent to 

7- 

ri,M(r2) HE [P/X2]([P'/XI](M(<3))) G M(G) 

Case: inl- programs 

2>i 

Ti h2 (inl P) G Ci V C2 

•RVi 

£i £2 
vux G Ci vc2,r2,Xi e Ci HE Pi e G      ri,x G d vc2,r2,x2 G C2 HE P2 G G 
 LV 

rx.jrecvoi.^i-r f faseXof   !inl?!iplN)eG \ I (mr A2) => P2 J 

T 

v®£= r„W(r2)hsM(ps8X°£ !££££) €W(G) 
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where [a] = [(inl P)/X]. Apply Cut to V and £i\ 

which is equivalent to 

f 
rx.MCra),^! e c^ hE [a](P0 G M(G) 

Weaken Vx to X»i with Z>i[Ti VM(r2)]: 

ri,M(r2)i-EP€Ci 

Apply Cut to V[ and T\\ 

v[ ® *k = r1? M(r2) hE [p/xj(M(i\)) G [P/*I](M(G)) 

which is equivalent to 

7- 

v[ (g)^ = rlf M(r2) hE [P/XIKMIP)) G [*](<?) 

Case: inr-programs 

v==        ri hE p € c2 
 RV2 
Ti hs (inl P) e Ci V C2 

goes analog to previous case 
Case: pair-programs 

and 

Ti hs P, € Ci        Ti hs P2 € C2 

X> = RA 
Ti l-E (pair Pi P2) e Ci A C2 

ri.xGCiAC2,r2lXi eCi.Xjefti-sPGG 

ri,X€Ci AC2,r2 hs  (caseXof    (pairXiX2)=>P ) SG 
■LA 

X g Free(Ci)UPree(C2),     since X g" swp(rx) (C.3) 

(C.4) 

V ®£ Tu [a](T2) hs [a](case X of (pair Xx X2) => P) G M(G) 
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where a is a shorthand for [(pair Pi P2)/X] 

T v®s1=     r^ [[a]] (ra) ^ Xi e [a] (Ci) ^ X2 ^ M (C2) hs M (p) e M (G) 

This is because of (C.3) equivalent to 

£(g)£i =  Yu[a]{T2),X1 e Cux2 G G2 hE [a](P) e M(G) 

We have to weaken Z)i,X>2, to perform cut elimination with T\ — apply weakening 
lemma 4.16. 

ri.M^i-EPiGCi 

p2 

ri,M(r2)hEp2ec2 

X>i(g)Pi ri)[a](r2),X2 G [Pi/XiKCa) hE [Pi/*i](M(P)) € [Pi/*i](M(G)) 

Trivially this is equivalent to 

£>'i(g>.Pi = Ti 
Ti, M(r2),x2 G c2 h£ [PI/*I](M(F)) G M(G) 

Finally cut elimination gives us 

V26§T2 = ^ ri,M(r2) hs [ft/xja^/xjfMCP))) e [P2/X2](M(G)) 

which is equivalent to 

£>2(g)P2 
P; 3 

ri, M(r2) hE [P2/X2]([PI/XI](M(P))) G H(G) 

D 
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